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Abstract—For an electroencephalograph (EEG)-based brain 
computer interface (BCI) application, the use of gel on the hair 
area of the scalp is needed for low impedance electrical contact. 
This causes the set up procedure to be time consuming and 
inconvenient for a practical BCI system. Moreover, studies of 
other cortical areas are useful for BCI development. As a more 
convenient alternative, this paper presents the EEG based-BCI 
using the prefrontal cortex non-hair area to classify mental 
tasks at three electrodes position: Fp1, Fpz and Fp2. The 
relevant mental tasks used are mental arithmetic, ringtone, 
finger tapping and words composition with additional tasks 
which are baseline and eyes closed. The feature extraction is 
based on the Hilbert Huang Transform (HHT) energy method 
and the classification algorithm is based on an artificial neural 
network (ANN) with genetic algorithm (GA) optimization. The 
results show that the dominant alpha wave during eyes closed 
can still clearly be detected in the prefrontal cortex. The 
classification accuracy for five subjects, mental tasks vs. 
baseline task resulted in average accuracy is 73% and the 
average accuracy for pairs of mental task combinations is 72%.  

I. INTRODUCTION 

A brain computer interface (BCI) system offers an option 
for people with severe disability issues by converting their 
brain activities into communication and control [1]. A BCI 
system using invasive surgery methods, such as 
electrocorticogram (ECoG) and intra-cortical recording, 
although  providing a better signal resolution, frequency 
range, and better quality of signal, has serious drawbacks,  
which include: risk of infection, scarring of post-surgery, and 
long term effects which still remain unclear for a safe and 
stabile operation. On the other hand, noninvasive BCI 
technologies, including functional magnetic resonance 
imaging (fMRI), magnetoencephalography (MEG), and 
positron emission tomography (PET) are not mobile and are 
expensive. An electroencephalograph (EEG) is still a popular 
tool for BCI in terms of portability and cost benefits [2, 3]. 

From the mental strategy viewpoint, the most common 
BCI-EEG technologies focus on selective attention and 
spontaneous mental signal methods. P300 [4]  and steady 
state visual evoked potential (SSVEP) [5] are  examples of 
the selective attention BCI in which the user needs to 
concentrate on external stimuli and which might become 
uncomfortable to user.  An event related desynchronization-
synchronization (ERD/ERS) is an example of the 
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spontaneous mental signal method. It focuses on the motor 
cortex area by imagining the left hand, right hand, feet and 
tongue [6, 7]. Other researchers have focused on different 
mental tasks such as baseline, multiplication, letter 
composing, 3-D rotation, and counting task [8, 9, 10]. These 
studies use electrodes on the cortex areas such as central, 
parietal, and occipital.   

However, these EEG methods require electrodes to be 
placed on hair covered of the scalp which creates some 
problems in ensuring good low impedance electrode contact. 
The use of conductive gel is needed for reducing the 
impedance and for proper electrical contact. This causes an 
inconvenient and time consuming set up procedure in a 
practical BCI system. The prefrontal cortex has the advantage 
of being located in the non-hair fore head area compared to 
other scalp areas. The electrode placement using prefrontal 
area could be used as an alternative solution for a practical 
BCI system. In addition, this is a useful as an option when 
disease or injury damages the other cortices.  

This paper presents the classification of the pairs 
combination of mental tasks by using EEG based-BCI with 
three electrodes positioned on the non-hair prefrontal cortex 
area at locations Fp1, Fpz, and Fp2. The mental tasks used in 
this experiment are based on the function of the prefrontal 
cortex in emotion and cognition which include mental 
arithmetic, ring tone, finger tapping and word association. 
From the brain functioning point of view, the parietal lobe 
shows significant activity during mental arithmetic 
calculation. The left prefrontal cortex also activates the 
working memory during arithmetic calculation [11, 12]. 
Next, the music imagery task has correlated to emotional 
responses as part of the prefrontal function [13]. The motor 
imagery task is dominant in the motor cortex region, but it 
also has a correlation with the prefrontal cortex as the 
execution task [14, 15]. Finally,  word association induces 
activation more on the left prefrontal cortex [16]. 

II. METHODS 

A. Data Collection 

The Human Research Ethics Committee from the 
University of Technology, Sydney approved this study. Five 
able-bodied and right handed subjects (3 males and 2 
females) aged between 25 and 35 years participated in the 
experiment. An EEG system from Compumedic with the 
sampling rate set to 256 Hz was used. The EEG electrodes 
were positioned as shown in Fig. 1 at locations: Fp1, Fpz, 
and Fp2. The location A2 was used for a reference electrode 
and the location A1 was used as a GND electrode. This 
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placement refers to the international 10-20 system standard. 
The impedance was measured and kept below 5kΩ. 
Unnecessary movements and eye blinks were kept to a 
minimum. The mental tasks used in the study include:  

 Baseline (base): Participants were asked to relax with 
open eyes and not to think of any other tasks. 

 Arithmetic calculation (math): Participants were 
instructed to imagine solving a series of simple one 
digit multiplications. 

 Ringtone (tone): Participants were asked to imagine a 
familiar mobile ringtone in their head without 
moving their mouth. 

 Finger tapping (finger): Participants were asked to 
imagine tapping their right index finger without 
actual movement. 

 Word association (words): Participants were asked to 
compose words in their mind without vocalizing. 

An additional eyes closed action was also collected to 
check the level of alpha wave activity. Each subject 
performed a recording session of ten sub-sessions for each 
particular mental task with the duration of 15 seconds on 
each sub-session. The first 3 seconds are removed to allow 
for the preparation time which results in 12 seconds being 
used. 

 

Figure 1.  EEG system setup 

B. Feature Extraction Algorithm 

Prior to feature extraction, a moving window 
segmentation of one second is applied, with an overlap of 
every quarter second segment, to give a result in 45 
overlapping segments for 12 seconds data in 10 session 
recordings for each mental task. Therefore, each subject 
provides data around 45×10 or 450 units per task. Next, 
digital signal processing (DSP) filters are employed to 
improve raw signal quality. These consist of a Butterworth 
band-pass filter with a bandwidth of 0.1 Hz to 40 Hz 
followed by a Butterworth notch filter at 50 Hz. 

For the feature extractor, the Hilbert Huang transform 
(HHT) [17] energy  as the time-frequency analysis algorithm 
is used.  The HHT has two processes: empirical mode 
decomposition (EMD) and Hilbert Huang transform. The 
EMD decomposes a time series data into amplitude and 
frequency modulated signals which are sets of intrinsic mode 
functions (IMF). In each set, each IMF needs to satisfy two 
conditions: first, the extrema and the zero crossings numbers 
should be equal or differ by one; second, it is a zero-mean 
value of the envelope. The EMD algorithm is summarized as 
follows:   1) identify extrema (minima and maxima) of the 
EEG signal; 2) generate the upper and lower envelope based 
on interpolation between maxima and minima; 3) compute 
the average of the two envelopes. 4) Extract the IMF 
component; 5) if the candidate IMF does not satisfy the 
properties of IMF replace the EEG data signal with candidate 
IMF and repeat from step 1, and if it does, take as an IMF 
and evaluate the residue; 6) repeat from step 1 to 5 by 
shifting the residual until the stopping criterion is satisfied. 

The Hilbert transform (HT) is applied to each IMF to 
obtain the Hilbert Huang amplitude spectrum (HHS). The 
signal, after calculating the HT on each IMF component, can 
be expressed as follows: 
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where H(,t) is Hilbert Huang spectrum, ai(t) is amplitude of 
the transform and i(t) is the instantaneous frequency and n is 
the number of input.  Equation (1) provides the amplitude 
and the frequency of each component as a function of time. 
This frequency-time distribution of the amplitude is 
represented as the HHS. 

Spectrum calculated from the HHT is used in the range of 
EEG bands: δ (0-3Hz), θ (4-7Hz), α (8-13Hz) and β (14-
30Hz). Next, numerical integration of the trapezoidal method 
is used to calculate the total energy on each frequency band, 
as a result with the energy over four bands calculated from 3 
channels (Fp1, Fpz, and Fp2), twelve power levels are made 
available.  

B. Classification Algorithm 

The  artificial neural network (ANN) as a classification 
method is a popular pattern recognition tool in biomedical 
applications [18]. This study uses a 3-layer feed forward 
neural network with one hidden layer network as shown in 
Fig. 2. The output vector z and the k-th component zk are 
computed as follows: 
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where f1, f2 is the activation function, x represents the input 
vector, w is the weight matrix vector, b is the scalar bias, n is 
the number of input nodes, m is the number of output nodes, 
wji is the weight to the hidden unit yj from input unit xi and wkj 
represents the weights to output unit zk from hidden unit yj. 
The biases are represented by bj and bk. A log-sigmoid 
function was assigned as the activation function which 
provides data values between one and zero. Therefore, prior 
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to the ANN the feature data value needs to be scaled to 
within the range zero to one as follows: 

 - )X* = (X - Xmin) / (Xmax Xmin    (3) 

where X is the input features value, X* is the value after 
scaling, Xmin is the minimum and Xmax is the maximum 
value of the input feature values. 

The Genetic Algorithm (GA) is used to optimize the 
neural network training. A population of chromosomes is 
initialized at the beginning and evolves with each generation 
of iteration in the following procedure: first, two parents are 
selected from the population of chromosomes based on the 
selection operation with the probability of selection 
proportional to their fitness value; second, after applying the 
crossover and mutation operation, a new offspring is 
generated from these parents. This is governed by the 
probabilities of crossover and mutation; third, the population 
generated replaces the current population. These procedures 
are repeated until  a termination condition is satisfied such as 
a predefined number of iteration [19]. 
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Figure 2.  Neural network architecture 

III. RESULTS 

The alpha wave during eyes closed action has the 
dominant value in the occipital cortex area. Figure 3 shows 
the comparison alpha wave during eyes closed and opened 
using the prefrontal cortex area. The alpha wave with a 
frequency band between 8-13Hz during eyes closed on the 
prefrontal cortex (Fp1, Fpz, and Fp2) also clearly shows the 
dominant frequency compared to the eyes opened action. 
Therefore, the eyes closed action as the mind switch [20] is 
still also available for the BCI operation.  
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Figure 3.  Detection of the dominant alpha wave during eyes closed in the 
prefrontal cortex 

The features data set per subject consists of 450 units for 
each mental task and 900 for the total of 2-tasks 

classification. This is divided equally between the training set 
and the testing set. The number of hidden neurons used for 
each subject is varied in order to find the best number which 
provides the highest fitness value to achieve the highest 
accuracy. The population size used for the GA is 50, and 
training is stopped when the training of the neural network 
reaches up to 2000 iterations. The probability of crossover is 
set at 0.8, and the probability of mutation is set at 0.1 for the 
GA based-neural network training. 

Because there is a difference in the EEG signals across 
different subjects, so called inter-subject variability, the ANN 
training and classifications are performed on each subject. 

TABLE I.  ACCURACIES OF TWO TASKS COMBINATION 
CLASSIFICATION FOR 5 SUBJECTS  

Task combination: 
Base(1), Math(2),  

Tone(3), Finger(4), 
Words(5) 

Accuracy (%) for 5 subjects (S1-S5) 

S1 S2 S3 S4 S5 Average 

Base(1)-Math(2) 65 71 75 69 77 71 

Base(1)-Tone(3) 84 60 91 61 60 71 

Base(1)-Finger(4) 79 78 89 80 64 78 

Base(1)-Words(5) 74 64 94 69 60 72 

Average 73 

 

Math(2)-Tone(3) 78 72 80 67 74 74 

Math(2)-Finger(4) 75 88 75 89 74 80 

Math(2)-Words(5) 69 78 77 86 73 77 

Tone(3)-Finger(4) 58 70 69 85 68 70 

Tone(3)-Words(5) 59 55 70 81 62 65 

Finger(4)-Words(5) 58 59 57 95 60 66 

Average 72 

 

Table I shows the results of any two mental task 
combinations for 5 subjects. First, all mental tasks (math, 
tone, finger, words) are compared to the baseline task. This 
comparison is necessary to make sure of any unique 
differences between mental task imagination and non-metal 
task imagination (baseline). The resulting comparison with 
the baseline shows a variation of accuracies across different 
subjects. Subject 1 has the best mental task when performing 
ringtone (tone) imagination with accuracy at 84%. Subject 2 
performs best the result in mental motor imagery of finger 
tapping (finger) with accuracy around 78%. Subject 3 has the 
best accuracy during mental word association (words) with 
accuracy above 94%. Subject 4 has the best accuracy around 
80% when performing mental motor imagery of finger 
tapping (finger). The best mental task for subject 5 is mental 
arithmetic calculation with the accuracy at 77%. 

 As a result, the chosen mental task has provided accuracy 
between 77% and 94% compared to the baseline task. The 
average accuracy of the baseline vs. mental task combination 
classification is around 73%. 

Next, the training and classification are done for any 
combinations of two mental tasks on each subject. The results 
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show that each subject has at least two pairs of mental task 
combination with accuracy above 70%. Subject 1 has the best 
two pairs: mental arithmetic vs. ringtone with accuracy at 
78% and arithmetic vs. finger tapping with accuracy at 75%. 
Subject 2 has the best two pairs: arithmetic vs. finger tapping 
with accuracy at 88% and arithmetic vs. word association 
with accuracy at 78%. Subject 3 has mental arithmetic vs. 
ringtone and arithmetic vs. words as the best two pair 
combination with accuracy 80% and 77%. Subject 4 has best 
two combination pairs: mental arithmetic vs. finger tapping 
with accuracy at 89% and finger tapping vs. words 
association with accuracy at 95%. Subject 5 has the best two 
pairs when performing mental arithmetic vs. ringtone and 
arithmetic vs. finger tapping with accuracy of around 74%.  

The average accuracy of all mental tasks in pair 
combinations classification is around 72%. In general, this 
result of mental tasks classifications shows the prefrontal 
cortex area could be used as the alternative location for the 
EEG based BCI with the advantage of being more practical 
and convenient. 

IV. CONCLUSION 

The EEG-BCI, based on prefrontal cortex with only three 
electrodes position at Fp1, Fpz and Fp2, has been 
successfully used to classify pairs of mental task 
combinations. Moreover, the dominant alpha wave during 
eyes closed still can be detected on the prefrontal cortex 
area. This could be used as an additional command for the 
BCI. The resulting classification shows variation accuracies 
of the best mental task on different subjects. Classification 
between chosen best mental task and baseline task resulted 
in accuracy at between 77% and 94% with the different best 
mental task on each subject. The average accuracy of all 
baseline and mental task combinations are at around 73%. 
This shows a distinct feature difference between subjects 
performing a particular mental task compared to those who 
are not performing mental task (baseline state). In mental 
task pair classifications, each subject is able to have at least 
two best pairs with accuracy between 74% and 95%. The 
average accuracy for pairs of mental task combinations is 
around 72%.  
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