
  

 
 

Abstract— In order to improve Brain Computer Interface 
usability for real life context, they should be able to adapt their 
speed to the user’s current psychophysical state and to 
understand from the ongoing EEG when he/she intends to 
suspend the control. In this work we evaluated an 
asynchronous classifier which provides these feature with 20 
healthy subjects, who were engaged in an environmental 
control task or in a spelling task. We also demonstrated how 
the proposed classifier can improve communication efficiency 
with respect to classical synchronous classifiers. 

I. INTRODUCTION 

Brain Computer Interface systems aim to restore 
communication and interaction with the external world in 
people with severe motor impairments. Non-invasive BCI 
based on electroencephalographic (EEG) signals can detect 
voluntary modulations of cerebral activity or particular 
responses to external stimuli and translate them into a control 
signal for an external device[1]. The P300 event related 
potential (ERP) is widely used as control feature for BCI 
systems both for communication and environmental 
control[2], it is typically a large and positive deflection in the 
EEG activity which reaches a maximum of amplitude (ca. 10-
20µV) over the centro-parietal scalp areas and occurs 250 to 
400 ms after a relevant stimulus (Target stimulus) presented 
within a train of frequent stimuli (No-Target stimuli) is 
recognized [3]. Classical P300-based BCIs work in a 
synchronous mode: after a well defined number of 
stimulation the system always makes a “decision”, assuming 
that the user is constantly attending to the stimulation. This 
mode of operation conditions works well in a laboratory 
context but it may have some limits for the use of BCI 
systems as assistive technology in real life context. In fact, to 
reduce the gap between BCI systems and classical input 
device (such as keyboard or mouse) they should be able to 
automatically suspend the control without the need for an 
explicit pause button when users divert their attention from 
the stimulation, and they also should be able to dynamically 
adapt their speed (the number of stimuli repetitions needed to 
achieve a classification) to the users’ current state. This work 
presents the results of an asynchronous classifier trying to 
solve these problems. It was evaluated both for an 
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environmental control task (database A) and for a spelling 
task (database B) in different operation conditions and global 
performance were compared to the performance of a classical 
synchronous P300-based BCI from the point of view of the 
communication efficiency. 

II. METHODS 

A. The asynchronous classifier 
The asynchronous classifier consists in the introduction of 

a threshold on the score values, being the threshold values 
defined by means of a procedure relying on ROC curves. In 
particular the thresholds values were chosen so that the false 
positive rate would not exceed the 5%. Every time the 
threshold is exceeded a classification occurs, so that the 
number of stimuli needed to achieve a selection is 
dynamically adapted. If the threshold value is not reached 
after a predefined number of repetitions of the stimuli, the 
system abstains from making a selection and a new trial 
begins (abstention). To make the system more robust to false 
positives when users are not engaged in controlling the 
interface, data acquired during a No-Control periods were 
added to the training data set[4][5]. 

B. Database A: environmental control 
Eleven healthy volunteers (4 females, 7 males; mean age 

26.4 +/- 4 years) were involved in this part of the study. The 
acquisition protocol was based on the P300 Speller interface  
[6] adapted to control a home automation system by using a 4 
by 4 matrix containing 16 black and white icons representing 
the available actions on the environment. Stimulation and 
data acquisition was managed by the BCI2000 framework 
[7]. Stimuli consisted in the intensification of rows and 
columns of the matrix. Each stimulus was intensified for 
125ms with an inter stimulus interval (ISI) of 125ms. Scalp 
EEG potentials were recorded (g.MobiLab, gTec, Austria, 
sampling rate 256 Hz) from 8 scalp positions (Fz, Cz, Pz, Oz, 
P3, P4, PO7 and PO8). Each channel was referenced to the 
linked earlobes and grounded to the left mastoid. Here we 
indicate with the term Sequence a complete cycle of 
intensification of each row and column.  Ten Sequences 
make a Trial. For each subject we acquired 4 Control runs, 
made of 8 Control trials, and 12 Alternate runs during which 
Control and No-Control trials alternated for a total of 10 trials 
per run. During the No-Control trials the subjects voluntarily 
diverted their attention from the stimulation performing three 
simple no control tasks: 
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• Fixation Cross, 30 trials: Subjects were instructed to fixate 
the cross in the centre of the interface and to ignore the 
stimulation;  

• Watch & Listen, 15 trials: Subjects were instructed to 
watch a movie displayed on the half of the screen beside the 
matrix;  

• Computation, 15 trials: Subjects had to answer simple 
arithmetic questions posed by the operator while fixating 
the cross. 

Control runs were used to assess the accuracy of the 
Synchronous system, by repeating 6 rounds of 2-fold cross-
validation. In each round, we used 16 trials to extract 
significant control features by Stepwise linear discriminant 
analysis (SWLDA [8]) and 16 trials as testing set. A similar 
procedure was also applied to the alternate runs, to evaluate 
the performance of the asynchronous system. In each round, 
the training dataset was composed of 35 Control trials, and 
35 No-Control trials (15 Fixation, 10 Watch & Listen and 10 
Computation), while the testing dataset was composed of the 
25 remaining Control trials [4].  

C. Database B: copy spelling 
Nine healthy subjects (5 females, 4 males mean age = 26.4 ± 
4.4) were enrolled in the study. All of them had previous 
experience with P300 based BCI and the GeoSpell 
interface[9]. The latter was designed to be operated in covert 
attention mode, so that it can be used also if ocular 
movements are impaired. In the GeoSpell interface the 36 
alphanumeric characters of the Farwell and Donchin's 
Speller were redistributed on the vertices of 12 hexagons 
hereinafter defined as groups or stimulation classes. Each 
character belongs to two groups, in which it is displayed on 
the same vertex. A fixation cross was displayed in the center 
of the stimulation interface at all times. The distance 
between the fixation cross and each character was fixed so 
that the visual angle is lower than 1 degree. Stimulation 
consisted in the pseudo-random appearance of groups 
(stimulus duration 125ms and ISI of 125ms) and was 
provided by a modified version of the BCI2000 framework. 
Scalp EEG signals were recorded from 8 positions (Fz, Cz, 
Pz, Oz, P3, P4, PO7 and PO8; gUSBamp, gTec, Austria, 
sampling rate 256 Hz). Each subject performed 8 runs of 6 
trials each. During the first 6 runs called Control Runs all 
the 36 characters of the GeoSpell interface were presented as 
Targets to the subject, who had to focus his attention on it 
mentally counting the number of its occurrences always 
gazing to the fixation cross in the middle of the interface. 
During a trial, 10 stimulation sequences were delivered. 
Also each subject performed 2 No-Control Runs. During the 
first No-Control run the subjects were required to fixate the 
cross in the center of the interface, trying to ignore the 
surrounding stimulations; during the last No-Control run 
subjects were also required to perform simple mathematic 
computations. 

To assess performance of the synchronous classifier, a 6-
fold cross-validation was carried out using data from the 6 
Control runs. Classification accuracy was then assessed as a 

function of the sequences accumulated in a trial in order to 
define the number of sequences to be used to define system 
efficiency (see Efficiency section). Regarding the 
asynchronous classifier, a 6-fold cross-validation was also 
performed. In this case, the 2 No-Control runs from the off-
line session were introduced in the training dataset and 
SWLDA was used to extract the control features.  

D. Efficiency 
In order to evaluate synchronous and asynchronous systems 
efficiencies, we used the metric proposed by Bianchi et 
al.[10]. This metric starts from the extended confusion 
matrix (ECM), which consists in a N by N+1 matrix, where 
N is the number of the available symbols. The additional 
column reports the number of cases in which the classifier 
abstains from taking a decision. To estimate the probability 
of incorrect or indeterminate classification of a symbol , a 
misclassification probability matrix (MPM) can be defined 
from the ECM. From the MPM, the extended overtime 
matrix (EOM) is built, representing the costs associated with 
errors and abstentions in terms of extra steps that have to be 
done to correct mistakes. The values for the MPM[i,i] 
correspond to the likelihood that the Target is correctly 
recognized, so the costs associated with errors for 
EOM[i,i]=0. We made assumptions about the 
misclassification cost, associating a cost of 1 to abstentions 
(the user only needs to repeat the trial), while we associated 
a cost of 2 to misclassifications (they can be corrected by 
selecting the respective UNDO actions and by selecting 
again the desired symbol). The latter assumption is still valid 
when the UNDO is unintentionally selected, thus deleting a 
correct symbol. The super tax vector (ST) is then defined as: 
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Where i denotes the desired class and j indicates the 
predicted class. Considering all symbols on the matrix 
equally probable, we can define the expected selection cost 
( ESC ), which is the number of classification required to 
generate a correct logical symbol: 
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The Efficiency of a system, which takes into account the 
time needed to achieve a classification, expressed in number 
of stimulation sequence (NumSeq), will be: 
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∗
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For the asynchronous classifier the NumSeq corresponds to 
the mean number of sequences needed to exceed the 
thresholds. To put the synchronous classifier in the same 
conditions of the asynchronous one, we set the NumSeq for 
the synchronous classifier so that the accuracy assessed with 
offline crossvalidation reaches 95% (corresponding to the 
5% of false positives admitted in the asynchronous 
classifier), up to a maximum of NumSeq = 10.  
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E. Robustness to false positives during No-Control 
periods 

Each subject performed Online No-Control runs operated by 
the asynchronous classifier in order to assess system 
robustness to false positives when subject diverted their 
attention from the stimulation. Subjects participating to 
database A performed 2 online No-Control runs. Each 
Online No-Control run took 5 minutes during which the 
stimulation was kept on. During the first and second No-
Control run, the subjects were asked to refrain from the 
control by watching a movie or by answering to arithmetic 
questions, respectively, while looking at the fixation cross. 
Subjects of database B were required to perform 2 online 
No-Control runs lasting 2 minutes and 30 seconds each and 
the tasks were the same of their 2 off line No-Control runs. 

III. RESULTS  

A.  Accuracy for the synchronous and the asynchronous 
classifier 
Figure 1 shows the performance of both synchronous and 

asynchronous classifier. When a character or an icon was 
correctly recognized and selected it was defined as a 
“correct”. If a classification occurred but the system selected 
an undesired character it was defined as an error, finally an 
abstention occurred when the threshold was not exceeded, 
and the latter was only possible for the asynchronous 
classifier.  

 
Fig. 1. Offline performance of the asynchronous and the 
synchronous classifier 

 

We performed three 2-way ANOVA (CI=.95) 
considering the paradigms (environmental control/copy 
spelling) and the classification mode 
(asynchronous/synchronous) as factors and the corrects, the 
errors, and the number of stimulation sequences as dependent 
variables respectively. The synchronous classifier on average 
exhibited an higher percentage of correct classification with 
respect to the asynchronous one (93.27% ± 6.53 and 84.49% 
± 11.27% respectively; F(1, 36)=9.7813, p=.00348), however 
the error rate was lower for the asynchronous classifier than 
for the synchronous one (2.85% ± 3.07 versus 6.73% ± 6.53; 
F(1, 36)=5,.431, p=.0294), since the former avoids errors 
through the abstentions (12.66% ± 10.48). Furthermore it 
should be considered that the number of sequences needed to 
achieve a classification was significantly lower for the 
asynchronous classifier (4.5 ± 1.06) than for the synchronous 

one (6.85 ± 2.56), as confirmed by the 2-way ANOVA 
(CI=.95) on the two distributions (F(1, 36)=13.870, 
p=.00067). 

B. Efficiency 
Table I reports the communication efficiency values for the 
asynchronous and the synchronous classifier for both the 
considered tasks. The asynchronous control exhibited a 
higher efficiency (0.21 ± 0.06) with respect to the 
synchronous classifier (0.17 ± 0.08). However this 
difference was not statistically significant as assessed by a 2-
way ANOVA considering the paradigms (environmental 
control/copy spelling) and the classification mode 
(asynchronous/synchronous) as factors and the Efficiency 
values as dependent variables (F(1, 36)=3.4542, p=.07128). 
Considering the Information Transfer Rate (ITR) assessed 
by the Wolpaw’s metric[11], which considers errors and 
abstentions in the same way, the asynchronous system 
exhibited an higher value (19,8 ± 9.19 bits/min) with respect 
to the synchronous classifier (17.3± 9.61 bits/min), but this 
difference was not significant as assessed by a 2-way 
ANOVA with paradigms and classification mode as factors 
and ITR values as dependent variables (F(1, 36)=.72306, 
p=.40076). 

 
Fig. 2: mean value of the number of sequences needed 
to achieve a classification with both synchronous and 
asynchronous classifier 
 
Table I: efficiency values for environmental control and 
copy spelling task

Environmental control Copy spelling task 
Asynch Synch Asynch Synch 

Subj1 0.27 0.20 Subj12 0.18 0.25 
Subj2 0.14 0.07 Subj13 0.18 0.20 
Subj3 0.32 0.32 Subj14 0.21 0.17 
Subj4 0.23 0.19 Subj15 0.21 0.14 
Subj5 0.27 0.18 Subj16 0.17 0.12 
Subj6 0.20 0.32 Subj17 0.20 0.11 
Subj7 0.29 0.24 Subj18 0.18 0.14 
Subj8 0.13 0.08 Subj19 0.15 0.11 
Subj9 0.16 0.05 Subj20 0.37 0.25 

Subj10 0.16 0.08 Mean 0.21 0.17 
Subj11 0.27 0.18 std 0.06 0.08 

A. Robustness to false positives 
During the Online No-Control runs on average 0.21 false 
positives/min were detected 
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IV. DISCUSSION 
Understanding the user’s intentions from the ongoing EEG 
such as when he/she wishes to suspend the control or when 
he/she recognizes an error represents an important issue 
which could improve usability and reliability of BCI system. 
To this aim, at the state of the art several classification 
algorithms have been proposed for P300 based 
BCIs[12][13][14]. However they only provides solution to 
dynamically adapt the number of stimuli repetitions and are 
not able to abstains from taking a decision if the user diverts 
his attention from the stimulation, or if the EEG signal is not 
reliable enough. While the statistical approach proposed in 
[15] provides this feature, it should be stressed that i) their 
test were carried out on a small number of subjects (4); ii) 
they reported a lower robustness to false positives during 
No-Control periods (0.71 false positives/min) and an 
Information Transfer Rate of 20 bits/min. Other 
asynchronous paradigms have been proposed based different 
control features, Panicker et al. [16] combined P300 
potential with Steady state visual evoked potentials 
(SSVEPs) for the detection of the control state reporting an 
ITR of 19.05 bits/min during control periods and false alarm 
rate of 4.2% during No-Control periods. Diez et al.[17], with 
high frequency SSVEPs, reported an ITR varying from 9.4 
to 45 bits/min. Zhang et al. [18] recently proposed an 
asynchronous paradigms based on the N200 speller and the 
motion visual evoked potentials (mVEPs). The latter 
paradigm allowed to reach during on line tests on 9 healthy 
subjects 70,1% accuracy during control periods, while 2,38 
false positives/min were detected during No-Control 
periods. Considering user needs and requests [19] 0.21 false 
positives/min may still be considered unsatisfactory for a 
continuous use. However this value may be acceptable for 
short pauses such as waiting for an answer during a talk, or 
thinking about what we are going to write. From the other 
side, abstentions may also occur during a control period, 
thus reducing the system’s accuracy with respect to a classic 
synchronous classifier. As we demonstrated in the current 
work, considering that error recovery have a higher cost than 
abstentions, the asynchronous system exhibits a higher 
communication efficiency because of its lower error rate 
with respect to the synchronous classifier.  

V. CONCLUSIONS 
In this work we evaluated the efficiency of an 

asynchronous P300-based BCI assigning different cost to 
errors and to unwanted misclassifications. Particularly, we 
analyzed data from two different databases, related to i) 
environmental control and ii) copy spelling task in covert 
attention conditions. Although the synchronous classifier 
exhibited a higher percentage of correct classifications with 
respect to the asynchronous one, taking into account the 
lower misclassification cost for abstentions than for errors, 
we demonstrated that the asynchronous system is more 
efficient than a synchronous system in terms of time needed 
to achieve a selection, stressing the advantages of the former 
with respect to the latter. Finally the asynchronous system 

revealed an acceptable robustness to false positives when the 
subject is not attending to the stimulation. 
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