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Abstract— Steady-State Visual Evoked Potential (SSVEP)-
based Brain-Computer Interface (BCI) applications have been 
widely applied in laboratories around the world in the recent 
years. Many studies have shown that the best locations to 
acquire SSVEPs were from the occipital areas of the scalp. 
However, for some BCI users such as quadriparetic patients 
lying face up during ventilation, it is difficult to access the 
occipital sites. Even for the healthy BCI users, acquiring good-
quality EEG signals from the hair-covered occipital sites is 
inevitably more difficult because it requires skin preparation 
by a skilled technician and conductive gel usage. Therefore, 
finding an alternative approach to effectively extract high-
quality SSVEPs for BCI practice is highly desirable. Since the 
non-hair-bearing scalp regions are more accessible by all 
different types of EEG sensors, this study systematically and 
quantitatively investigated the feasibility of measuring SSVEPs 
from non-hair-bearing regions, compared to those measured 
from the occipital areas.  Empirical results showed that the 
signal quality of the SSVEPs from non-hair-bearing areas was 
comparable with, if not better than, that measured from hair-
covered occipital areas. These results may significantly improve 
the practicality of a BCI system in real-life applications; 
especially used in conjunction with newly available dry EEG 
sensors. 
 

I. INTRODUCTION 

Steady-State Visual Evoked Potential (SSVEP) is the 
electrical response of the brain to flickering visual stimuli. 
SSVEP-based brain-computer Interface (BCI) recently has 
been widely used in many applications due to its advantages 
such as little user training and high information transfer rate 
[1]-[9]. For example, Gao et al. [8] applied the SSVEP to the 
control of electric apparatus that featured noninvasive signal 
recording, little training requirement, and a high information 
transfer rate. As a result, more studies have explored 
applications of this technology.  

As SSVEPs are pre-dominantly originated from the 
visual cortex, it seems natural to collect the signals by 
placing electrodes over the occipital regions. Some studies 
even performed an off-line pilot experiment to obtain the 
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optimal electrode locations prior to on-line BCI practices. 
However, no matter how people perform the EEG recording 
from hair-covered areas, they suffered from the 
complications of recording such as long preparation time 
and insufficient skin-electrode contact area due to hair. 
These complications make BCI impractical for routine use in 
daily life. To overcome these problems, dry contact- and 
non-contact-type EEG sensors have been developed to 
enable user-friendly EEG measurements to improve the 
usability of BCIs [10]-[13].  However, a major concern over 
the use of dry electrodes for EEG measurement is that the 
SNR of the acquired signals might not be as good as that 
from the gel based electrodes [10]-[13]. Furthermore, for 
some BCI users such as quadriparetic patients lying face up 
during ventilation, assessing the occipital sites would be 
undoubtedly more difficult either by wet or dry electrodes. 
Therefore, an alternative approach to easily extract high 
quality SSVEPs becomes a crucial issue in BCI community.   

The topography of SSVEP often shows a widespread 
scalp distribution because the SSVEP mainly projected from 
the visual cortex to the occipital areas, neck, forehead or even 
the face areas. Therefore, it’s reasonable to believe that one 
could measure the SSVEP over non-hair-bearing areas. To 
our best knowledge, no study has yet systematically and 
quantitatively compared SSVEPs from different scalp and 
face locations using high-density EEG data.  This study aims 
to answer two main questions: (1) Can SSVEP be measured 
from non-hair-bearing areas? What is the quality of the 
signals compared against that from the hair-covered area? (2) 
How many channels of non-hair-bearing SSVEP data would 
be needed to archive the same SNR measured from the 
occipital areas in SSVEP experiments? If the proposed non-
hair-bearing montage approves feasible, the practicality of an 
SSVEP BCI system can be significantly improved, especially 
used in conjunction with dry EEG sensors such as non-
contact [11] or polymer based electrodes [12]. 

II. METHODS 

A. Stimuli and Procedure 

The visual stimulus was a 5×5 cm square coded and 
rendered at the center of a 21” CRT monitor with a 120Hz 
refresh rate. The stimulus frequencies ranged from 9Hz to 
13Hz with an interval of 1Hz. In general, this cannot be 
implemented with a fixed rate of black/white flickering 
pattern due to a limited refresh rate of a LCD screen. Wang 
et al. [14] developed a method that approximates target 
frequencies of SSVEP BCI with variable black/white 
reversing intervals. Based on this approach, any stimulus 
frequency up to half of the refresh rate of the screen can be 
realized. The stimulus program was developed in Microsoft 
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Visual C++ using the Microsoft DirectX 9.0 framework and 
rendered on Windows XP platform.  

Subjects were seated in a comfortable chair in front of the 
monitor. A chin rest was used to fix the head 35 cm from the 
screen. The experiment consisted of four sessions, each 
including five 30s-long trials for the five different stimulus 
frequencies, which were randomly presented. Subjects were 
asked to gaze on the flickering stimulus for 30 seconds and 
then take a ~15s rest after each trial in order to avoid visual 
fatigue caused by flickering. There was a several-minute 
break between two sessions. 

B. Data Acquisition 

Five healthy male subjects with normal or corrected to 
normal vision participated in this experiment. All participants 
were asked to read and sign an informed consent form 
approved by the UCSD Human Research Protections 
Program before participating in the study. 

EEG data were recorded using Ag/AgCl electrodes from 
256 locations distributed over the entire head using a 
BioSemi ActiveTwo EEG system (Biosemi, Inc.). Fig. 1 
shows the 256-channel cap that covers not only the brain 
areas, but also the non-hair-bearing areas including the 
forehead, face, behind-the-ear, and neck areas. Eye 
movements were monitored by additional bipolar horizontal 
and vertical EOG electrodes. Electrode locations were 
measured with a 3-D digitizer system (Polhemus, Inc.). All 
signals were amplified and digitized at a sample rate of 2,048 
Hz. All electrodes were with reference to the nasion. 

 

C. EEG Data Pre-processing  

The 256-channel EEG data were first down-sampled to 
256Hz. For each trial, six 4s-long EEG epochs were extracted 
according to event codes generated by the stimulus-
presentation program [14]. For each stimulus frequency, the 
epochs from the four sessions were concatenated to form a 
dataset of 24 epochs. Epochs with severe artifacts (such as 
movement artifacts and eye blinks) were manually removed 
from the dataset. To remove the spontaneous EEG activities, 
the remaining epochs were averaged to obtain the multi-
channel SSVEP signals.  

D. EEG Data Analyzing 

1) Signal-to-noise ratio (SNR) 

This study used SNR to evaluate the quality of SSVEPs. 
Fast Fourier Transform (FFT) was used to calculate the 
amplitude spectrum of the 4s-long EEG data (i.e., 
y=|FFT(x)|). The frequency resolution of the resulting 
amplitude spectrum was 0.25Hz. The SNR was defined as the 
ratio of the amplitude of the SSVEP (at the stimulating 
frequency) to the mean amplitude of the background noise 
(within the frequency band of 8-15Hz, which includes 28 
frequency bins) 
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2) Single-channel evaluation 

Since this study aims to investigate the SNR of SSVEPs 
recorded at different locations, the SNR values for all 
electrodes were calculated, sorted, and categorized into four 
areas as indicated in Fig.1. In each of the four areas, the 
electrode with the highest SNR was selected for comparison. 
In the hair-covered area delineated by the red line, the 
electrode with the highest SNR was located in the occipital 
region. This procedure was applied to all stimulus 
frequencies. 

3) Multi-channel evaluation 

The spatial filtering technique has been widely used in 
EEG signal processing to improve the SNR of the EEG 
signals recorded from multiple scalp locations. In previous 
studies of SSVEP-based BCIs, the Canonical Correlation 
Analysis (CCA) algorithm has proved to be very efficient for 
improving the SNR of SSVEP signal [2]. CCA can calculate 
the canonical coefficients for the two different datasets (in 
this case, EEG dataset and a reference signal set) such that 
the correlation between the two canonical variables was 
maximized. The reference signal set is defined as 
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where f is the stimulating frequency. In practice, the 
coefficients for the EEG dataset could be used as spatial 
filters to compute linear combinations of EEG data from all 
electrodes. For multi-channel data, the SNR of SSVEPs was 
calculated using the projection of the multi-channel data (i.e., 
the canonical variable). 

The SNR of the multi-channel data was estimated by 
calculating the mean SNR of randomly selected combinations 
of electrodes from the 80 electrodes over the non-hair-
bearing areas. The number of selected electrodes ranged from 
1 to 80. For each number, the SNR calculation was repeated 
1,000 times with different electrode combinations. The SNR 
and electrode positions of the combination with the highest 
SNR were saved for further comparison. 

 
                        (a)                                                    (b) 
Figure 1. Electrode placement for this study. (a) A subject wore a 256-
channel electrode cap. The red line roughly delineates the boundaries 
between the hair and non-hair-bearing areas of the subject. Blue, 
magenta and brown circles represent the electrodes locates at the 
forehead/face, behind-the-ear, and neck areas, respectively. (b) Top 
view of the distribution of the scalp electrodes. 
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III. RESULTS 

Fig.2 shows the SNR topography and the normalized 
amplitude spectrum on different head areas for Subject 1 and 
Subject 5. As expected, the occipital area has the highest 
SNR of SSVEP signals, indicating that the brain sources 
might locate in or near the visual cortex. The SNR depended 
on the distance between the electrode position and the 
occipital region. As shown in Fig.2 (a) and (b), the SNR 
decreased at other brain areas (e.g., the frontal area) and non-
hair-bearing areas. Although the SNR of SSVEP signals 
recorded from the non-hair-bearing areas was lower than that 
recorded from the occipital region, signals acquired from the 
non-hair-bearing areas still showed a clear frequency 
response at the stimulating frequency (see Fig.2 (c) and (d)). 
This finding confirmed our hypothesis that the SSVEPs 
might be detectable from EEG signals measured from the 
non-hair-bearing areas on the head. 

 

Fig.3 illustrates the SNRs of SSVEP signals contributed 
by combinations of data from multiple electrodes placed at 
the non-hair-bearing areas for all subjects. For a single 
electrode, the occipital electrode has a much higher SNR than 
any electrode from the non-hair-bearing areas. In general, the 
SNR increased as the number of electrodes involved in the 
CCA processing increased (as indicated by the blue solid line 
in Fig. 3). For all the subjects, the best combination of 
multiple electrodes from the non-hair-bearing areas reached 
an SNR comparable to the occipital electrode. In particular, 
three subjects (Subjects 2, 3 and 5) had SNRs of non-hair 
SSVEPs even higher than those of the occipital electrode. All 
subjects reached comparable SNRs by using the optimal 
occipital electrode and a combination of 10 non-hair-bearing 
electrodes. For Subjects 2, 3, and 5, using as few as five non-
hair-bearing electrodes could exceed the SNR of the occipital 
electrode. 

Next, this study explores the optimal placements of multi-
channel non-hair-bearing electrodes to realize a practical 
SSVEP-based BCI system. Fig. 4 shows the electrode 
placements with the highest SNR using 10 electrodes. For all 
the subjects, the 10 optimal electrodes covered multiple non-
hair-bearing areas, all contributing to the improvement of the 

SNR of SSVEPs. This individualized electrode montage has 
the potential to result in many practical BCI applications. 

 

 

  
                            (a)                                                  (b) 
 

 
                            (c)                                                  (d) 
Figure 2. Scalp topography of the SNR’s of SSVEPs at 10 Hz for (a) 
Subject 1, (b) Subject 5. Single-channel SNR from the occipital and 
non-hair-bearing areas for (c) Subject 1, (d) Subject 5. 

    
                         (a)                                                       (b) 

 
                         (c)                                                      (d) 

 
                          (e)        
                                             
Figure 3. The relationship between the SNR and the number of 
electrodes used in the CCA processing. (a) - (e) correspond to Subject 1-
5, respectively. The non-hair-bearing electrodes include those from the 
face, neck, and behind-the-ear areas. The signals measured from the 
occipital electrodes had the highest SNR. 

 
                            (a)                                       (b) 

 
                           (c)                                               (d) 

 
                          (e) 
 
Figure 4. The 2-D projection for the placement of 10 electrodes that 
result in the highest SNR for each of the 5 subjects. (a) - (e) correspond 
to Subjects 1-5, respectively. The black dots indicate the electrode 
locations over the non-hair areas.  
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IV. CONCLUSION AND DISCUSSION 

SSVEP-based BCI applications have attracted a lot of 
attention recently. However, to our best knowledge, no study 
has systematically compared the SNR of SSVEPs measured 
from hair-covered and non-hair-bearing areas. This study  
showed that, across the five subjects, EEG recordings from 
non-hair-bearing areas, including the face, neck, and behind 
the ear areas, could reliably measure SSVEPs. Generally 
speaking, the rank of the SNR was the occipital area > 
behind-the-ear > neck area ≈ face area. A lower SSVEP SNR 
obtained from the neck and face areas might be attributed to 
the contamination from the muscle activity to those areas.  

The comparison between hair-covered and non-hair-
bearing area showed that the quality of SNR depends on the 
electrodes selections. As shown in Fig. 3, the SNR of non-
hair-bearing SSVEPs of Subject 3 matched well with that of 
the reference channel by using only two electrodes. The 
comparable results were found in Subjects 2 and 5. These 
results suggested that, if an optimal non-hair electrode 
combination could be known in advance, one could achieve 
comparable SNRs of SSVEP by using electrodes placed on 
the non-hair-bearing areas and the occipital area.  

Using laboratory-oriented EEG setups for real-world 
SSVEP BCI applications is known to be impractical for 
routine use. An alternative approach to obtain informative 
EEG signals over no-hair-bearing sites is thus highly 
desirable. The results of this study demonstrated the 
feasibility of using a non-hair-bearing montage for measuring 
SSVEP, which we believe might significantly improve the 
practicality of BCI systems in real-life environments. If the 
proposed apparatus proves feasible in other BCI practices, a 
much wider range of applications of BCI will emerge.  

ACKNOWLEDGMENT 
Melody Jung is appreciated for editorial assistance. 
 

REFERENCES 
[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and 

T. M. Vaughan, “Brain-computer  interfaces for communication and 
control,” Clinical Neurophysiology, vol. 113, no. 6, pp. 767 – 791, 
2002. 

[2] G. Bin, X. Gao, Z. Yan, B. Hong, and S. Gao, “An online multi-
channel SSVEP-based brain-computer interface using a canonical 
correlation analysis method,” Journal of Neural Engineering, vol. 6, 
no. 4, 2009.  

[3] Y. -T. Wang, Y. Wang, and T. -P. Jung, “A Cell-phone based Brain 
Computer Interface for Communication in Daily Life", Journal of 
Neural Engineering, vol.8, no.2, pp. 1-5, 2011.  

[4] M. Cheng and S. Gao, “An EEG-based Cursor Control System. 
“ IEEE  BMES/EMBS conference, vol.1, 1999. 

[5] M. Cheng, X. Gao, S. Gao, and D. Xu, “Design and implementation of 
a brain–computer interface with high transfer rates,” IEEE Trans. on 
Biomed. Eng. vol.10, pp. 1181-1186, October 2002. 

[6] Y. Wang, R. Wang, X. Gao, and S. Gao, “Brain-computer interface 
based on the high-frequency steady-state visual evoked potential.”, 
Proceeding of IEEE Neural Interface and Control, pp. 37-39, 2005. 

[7] S.P. Kelly, E.C. Lalor, R.B. Reilly, J.J. Foxe, “Visual spatial attention 
tracking using high-density ssvep data for independent brain–
computer communication,”  IEEE Trans. on Neural Systems and 
Rehab. Eng., vol.13, pp. 172-178, 2005. 

[8] X. Gao, D. Xu, M. Cheng, and S. Gao, “A BCI-based environmental 
controller for the motion-disabled,” IEEE Trans. on Neural Systems 

and Rehab. Eng., vol. 11, no. 2, pp. 137–140, 2003. 
[9] K. -K. Shyu, P. -L. Lee, M. -H. Lee, M. -H.  Lin, R.-J. Lai, and Y. -J. 

Chiu, “Development of a Low-Cost FPGA-Based SSVEP BCI 
Multimedia Control System,”   IEEE Trans. on Biomed. Circuits Syst. 
vol.4, pp. 125-132, April 2010. 

[10] C. Grozea, C. D Voinescu, and S. Fazli, “Bristle-sensors Low-cost 
Flexible Passive Dry EEG Electrodes for Neurofeedback and BCI 
Applications," Journal of Neural Engineering, vol.8, no.2, pp. 1-5, 
2011.  

[11] Y. M. Chi, Y. -T. Wang, Y. Wang, C. Maier, T. P. Jung, G. 
Cauwenberhs, “Dry and Don-contact EEG Sensors for Mobile Brain-
Computer Interfaces,”   IEEE Trans. on Neural Syst. And Rehab. Eng. 
vol.20, pp. 228-235, March 2012. 

[12] C. -T. Lin, L. -D. Liao, Y. -H. Liu, I -J. Wang, B. -S. Lin, and J. -Y. 
Chang. , “Novel Dry Polymer Foam Electrodes for Ling-Term EEG 
Measurement,”   IEEE Trans. on Biomed. Eng.  vol.58, pp. 1200-
1207, May 2011. 

[13] J.-C. Chiou, L.-W. Ko, C.-T. Lin, C.-T. Hong, T.-P. Jung, S.-F. Liang, 
and J.-L. Jeng, “Using novel  mems eeg sensors in detecting 
drowsiness application,” in Biomedical Circuits and Systems 
Conference, 2006. BioCAS 2006. IEEE, Nov. 2006, pp. 33 –36. 

[14] Y. Wang, Y. -T. Wang, and T. -P. Jung, "Visual stimulus design for 
high-rate SSVEP BCI", Electronics Letters, vol.46, no. 15, pp. 1057-
1058, 2010.  

 

1809


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

