
Mushu, a free- and open source BCI signal acquisition, written in
Python

Bastian Venthur1 and Benjamin Blankertz2

Abstract— The following paper describes Mushu, a signal
acquisition software for retrieval and online streaming of
Electroencephalography (EEG) data. It is written, but not
limited, to the needs of Brain Computer Interfacing (BCI).
It’s main goal is to provide a unified interface to EEG data
regardless of the amplifiers used. It runs under all major
operating systems, like Windows, Mac OS and Linux, is written
in Python and is free- and open source software licensed under
the terms of the GNU General Public License.

I. INTRODUCTION

When doing BCI experiments with EEG data one always
has to use EEG amplifiers to acquire the brain signals. Those
amplifiers usually come with their own software and different
vendors have different formats for saving and online stream-
ing of the EEG data. Often the software provided by the
amplifier vendors only runs on Microsoft Windows systems,
leaving out the Mac OS and Linux users. With Mushu we
want to solve those problems altogether: we want a signal
acquisition software that runs on all major operating systems,
that supports a wide range of EEG hardware, that produces
and outputs data in a standardized format independent from
the amplifier used and that is free- and open source software.

We decided to use Python as the programming language
of choice because we think it is an excellent general purpose
programming language with a large and comprehensive
standard library. Together with SciPy [8], NumPy [7] and
matplotlib [9], Python is a powerful and free alternative to
commercial packages like Matlab. Studies [2] have shown
that programming in high level languages like Python sig-
nificantly shortens the amount of time needed to implement
a solution and leads to shorter and thus less error-prone code
compared to more low level languages like C or C++. This is
particularly important for software which is going to be used
and modified not only by computer scientists, but students
and researchers from different fields.

Figure 1 shows an overview over the general structure
of a BCI system. EEG data is measured via EEG caps
from the subjects head and the signal is amplified through
the EEG amplifiers. A signal acquisition software collects
the data from the amplifier and forwards it to the signal
processing where usually some machine learning algorithm
extracts information from the EEG data and forwards it to
the feedback/stimulus presentation. With Pyff [1] we already
provided a Pythonic software framework for feedback and

1B. Venthur, Berlin Institute of Technology, Franklinstr. 28/29, 10587
Berlin, Germany bastian.venthur at tu-berlin.de

2B. Blankertz, Berlin Institute of Technology, Franklinstr. 28/29, 10587
Berlin, Germany benjamin.blankertz at tu-berlin.de

stimulus presentation, with Mushu we are targeting now the
signal acquisition part. It is the next step in our ongoing
effort to provide a completely free- and open source BCI
system written in Python.

Similar projects to create complete BCI systems exist, like
BCI2000 [5] or OpenVibe [6]. BCI2000 is free only for non-
commercial and educational usage and OpenVibe being truly
free software is licensed under the terms of the GPL. Both
are written in C/C++ which gives better performance, but
makes it also much harder to write BCI experiments and
applications for non-computer scientists. OpenVibe mitigates
this by allowing for an drag- and drop like approach for
visual programming of experiments.

Mushu does not try to compete with the commercial
software provided by EEG hardware manufacturers which
provide much more functionality beyond the scope of Mushu.
Brain Products for example sells commercial software like
the BrainVision Recorder and BrainVision Analyzer but also
provides an open-source software called PyCorder which is
a slim signal acquisition software. We believe that hardware
manufacturers will benefit if their amplifiers are supported
directly by a diversity of software acquisition systems like
Mushu.

The rest of the paper is devided into two parts: the first part
describes how we reverse-engineered the g.USBamp protocol
to write a platform independent driver for it, the second part
describes the design of the signal acquisition software.

II. REVERSE-ENGINEERING THE G.USBAMP USB
PROTOCOL

The first type of amplifier we implemented a driver for
Mushu was the g.USBamp. Although in this paper we
elaborate a bit more detailed on how we reverse-engineered
the g.USBamp it is important to remember that Mushu is
not limited to g.USBamp. One design goal is specifically to

Signal
Acquisition

Signal
ProcessingFeedback/Stimulus

Presentation

Amplifier

Fig. 1. General structure of a closed loop BCI system. EEG data is acquired
from the subject, fed through the amplifier and collected by the signal
acquisition. The signal acquisition forwards the EEG data to the signal
processing where information is extracted from the data and forwarded to
the feedback/stimulus presentation.

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

1786978-1-4577-1787-1/12/$26.00 ©2012 IEEE

support a wide range of EEG amplifiers and provide a unified
interface for them.

The g.USBamp is an EEG amplifier produced by g.tec
medical engineering GmbH that is widely used in the BCI
community. The amplifier is connected to the computer via
USB and can record up to 16 EEG channels per amplifier.
To record more than 16 channels, several amplifiers can be
connected with a synchronization cable. g.tec provides an
API and compiled libraries for Windows and Linux allow-
ing to write own signal acquisition software. Unfortunately
those drivers have to be purchased by g.tec and cannot be
redistributed along with the written software, which make
those libraries unsuitable for free software. So we decided to
reverse engineer the USB protocol between the amplifier and
the computer and implement our own platform independent
and free driver.

A. Setup

In order to observe the communication between the ampli-
fier and the computer we connected the amplifier to a Linux
computer and ran a Windows XP instance inside a virtualbox
environment on that very same computer. Virtualbox is a
virtualization software allowing to run an abitrary operating
system (OS), like Windows XP, as a guest on a different
host OS, like Linux. This happens transparently for the guest
OS, which does not notice that it is running in a virtual
environment instead of real hardware.

Inside the Windows environment we used the g.USBamp
demo tool provided by g.tec which allows for reading the
measured data and modifying the various settings on the
amplifier. For the g.USBamp tool it looked like is was com-
municating directly with the amplifier, but since the Windows
XP system it was running on, itself ran in an virtualized
environment, all communication was proxied through the
Linux host system.

On the Linux host system we used a special kernel mod-
ule, usbmon [11] which allows for monitoring USB traffic
between the host system and the USB device. Usbmon works
analogous to network monitoring tools like tcpdump. With
the help of usbmon we were able to monitor all commands
and data sent between the amplifier and the g.USBamp tool
and thus had everything we needed to reverse-engineer the
protocol.

B. Analysis of the USB Data

Without any prior knowledge about the protocol, we had
approach the analysis systematically. We divided the data
to analyze into two categories: (a) commands sent to the
amplifier and (b) data sent by the amplifier.

To analyze the commands sent to the amplifier, we used
the g.USBamp tool to modify one setting at a time and
recorded the data sent over USB to the amplifier. It turned
out that most of the settings made in the g.USBamp tool
translated into one USB request sent to the amplifier. Where
settings had different options (e.g. setting the sampling
frequency) the parameter is either passed as a value to the
USB request or inside the buffer which is sent with every

Feedback/Stimulus
Presentation

Signal
ProcessingMushuAmplifier

Feedback/Stimulus
Presentation

Signal
ProcessingMushuAmplifier

Network

Method Calls

Fig. 2. Two ways of using Mushu: (a) As a stand alone application
providing a network interface to the BCI system. (b) directly as a Python
library.

request. Decoding the requests was straight forward after we
figured basic things like the endianness and word length of
the data transferred. Describing all commands in detail in
this paper would be excessive and we kindly refer the reader
to the gtec.py module we wrote, where every command
is documented in detail.

Analyzing the data sent by the amplifier was more difficult.
We expected to receive packets of fixed length as the number
of channels is fixed and the amplifier is supposed to send
the measured values for all available channels. Instead we
received packets of varying length with random numbers and
had no clue how the data was ordered regarding the channels.
Fortunately we noticed single zeros within the seemingly ran-
dom data, appearing at a fixed period. It turned out that those
zeros where the values for the trigger line, and from that we
could infer the ordering of the rest of the data. It turned
out that the amplifier repeatedly sends its data with one
measured value per channel: ch1, ch2, . . . , ch17, ch1, ch2
One received packet from the amplifier contains not always
exactly 17 (16 channels + trigger line) data points, but
sometimes more and sometimes less. One has to buffer
incomplete packets and concatenate the next packets, as the
amplifier will always send the values in the above order.
Moreover, the stream of values has no delimiter whatsoever
to mark when all values for a given point in time where
transferred, so one has to be careful not do drop any packages
as it is not easy to determine which value belongs to which
channel just by looking at the raw numbers.

After the analysis of the USB protocol between the
g.USBamp and the g.USBamp tool we where able to im-
plement our own driver for the amplifier using PyUSB [10]
which provides USB access to the Python language.

III. DESIGN OF THE SIGNAL ACQUISITION
SOFTWARE

As we saw in Figure 1, Mushu as a signal acquisition
software is placed between the EEG amplifier and the signal
processing in the BCI software stack. It reads the raw data
from the amplifier, converts it to a standardized format and
outputs the data to the signal processing part of the BCI
system.

A. Two Use Cases

Mushu’s design allows for two different use cases (Fig-
ure 2). The first one being the usage of the software directly

1787

as a Python library and the second one being the usage of
the software as a stand-alone server providing the EEG data
acquired by the amplifier. Using the software as a Python
library is convenient when the signal processing part is also
written in Python, as one can combine the signal acquisition
with the signal processing (and possibly the feedback and
stimulus presentation) into a single application.

Using the software as a stand-alone server, decouples the
signal acquisition from the rest of the BCI software stack.
It is useful if the rest of the BCI system is written in a
different programming language than Python, as all partners
communicate over network sockets and not via function
calls. The server approach makes it also possible to have
the different parts of the BCI software stack run on different
computers. Functionality-wise are both solutions equivalent
and the choice between one of them strongly depends on the
connection to the rest of the BCI software stack.

B. Connection to the BCI system

To transfer the acquired EEG data to the later parts of
the BCI system, the data is converted into NumPy arrays
[7]. NumPy is the de-facto standard for scientific computing
in Python as NumPy provides an implementation of fast n-
dimensional arrays which is the foundation of other scientific
packages as SciPy [8] or matplotlib [9] which provide a
free- and open source alternative to commercial packages
like Matlab. For each received packet from the amplifier,
Mushu translates the data into a matrix where each column
is mapped to a channel (i.e. channel 1 7→ column 1, etc.)
and the rows maintain the ordering of the measured values
per channel in time. Having the EEG data stored in NumPy
arrays is convenient as NumPy and SciPy use LAPACK
[4] and the likes to operate efficiently on those arrays, and
efficiency is mandatory for the later signal processing steps.

In the use case where the signal acquisition is used directly
as a Python library, the NumPy arrays containing the EEG
data are returned directly, in the second use case where the
signal acquisition is used as a stand alone application, the
arrays are serialized before transmission.

As a second, and more convenient option for a non-Python
BCI system, we plan to implement the TOBI interface A
[3], an emerging standard for transmission of this kind of
bio signals. Implementing the TOBI interface A will allow
to connect the Mushu signal acquisition to all BCI systems
which comply with the TOBI interface A standard.

IV. CONCLUSION AND OUTLOOK
In this paper we described Mushu, a Pythonic signal

acquisition framework for EEG data. Mushu can be used as
a Python library or as a stand alone server streaming EEG
data in a unified data format from various EEG amplifiers.

We also showed how we reverse-engineered the
g.USBamp protocol to write a cross platform driver usable
for Mushu. Although Mushu currently only supports the
g.tech USBamp amplifier, we are working on supporting
other amplifiers by other manufacturers as well, as we want
to provide a signal acquisition software which hides the
underlying data source through high level commands and
thus provides a unified interface for EEG data acquisition
for all kinds of EEG hardware.

Mushu is well in the line with our ongoing effort to
develop a complete, functional, free and open source BCI
system in Python, a powerful and free alternative to commer-
cial software like Matlab, but easier to use for non computer
scientists language like C or C++.

Mushu is free- and open source software licensed un-
der the terms of the GNU General Public License (GPL).
Mushu’s website is: http://bbci.de/mushu.

REFERENCES

[1] Bastian Venthur, Simon Scholler, John Williamson, Sven Dähne,
Matthias S Treder, Maria T Kramarek, Klaus-Robert Müller and
Benjamin Blankertz. Pyff—A Pythonic Framework for Feedback
Applications and Stimulus Presentation in Neuroscience. Frontiers in
Neuroscience. 2010. doi: 10.3389/fnins.2010.00179.

[2] L. Prechelt, An empirical comparison of C, C++, Java, Perl, Python,
Rexx and Tcl., IEEE Computer, vol. 33, no. 10, pp. 23–29, 2000.

[3] C. Breitwieser, C. Neuper, G.R. Müller-Putz. A Concept to Standardize
Raw Biosignal Transmission for Brain-Computer Interfaces. 33rd
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC 11). pp. 6377–6380. Boston, MA. 2011.

[4] Anderson, E. and Bai, Z. and Bischof, C. and Blackford, S. and
Demmel, J. and Dongarra, J. and Du Croz, J. and Greenbaum, A. and
Hammarling, S. and McKenney, A. and Sorensen, D. LAPACK Users’
Guide. Third Edition. Society for Industrial and Applied Mathematics.
Philadelphia, PA. 1999. ISBN 0-89871-447-8 (paperback).

[5] G. Schalk, D.J. McFarland, T. Hinterberger, N. Birbaumer, and
J.R. Wolpaw: BCI2000: A General-Purpose Brain-Computer Interface
(BCI) System, IEEE Trans Biomed Eng, 51(6), June 2004.

[6] Y. Renard, F. Lotte, G. Gibert, M. Congedo, E. Maby, V. Delannoy, O.
Bertrand, A. Lécuyer, OpenViBE: An Open-Source Software Platform
to Design, Test and Use Brain-Computer Interfaces in Real and Virtual
Environments, Presence : teleoperators and virtual environments, vol.
19, no 1, 2010 (in press)

[7] The NumPy project. http://numpy.scipy.org
[8] The SciPy project. http://scipy.org
[9] The matplotlib project. http://matplotlib.sourceforge.net

[10] Tue PyUSB project. http://pyusb.sourceforge.net
[11] Usbmon kernel module documentation.

http://www.kernel.org/doc/Documentation/usb/usbmon.txt

1788

	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

