
  

  

Abstract— We investigated the feasibility of discriminating 

four different motor imagery (MI) types from both hands using 

electroencephalography (EEG) through exploring underlying 

features related to MIs of thumb and fist from one hand. New 

spectral and spatial features related to different MIs were 

extracted using principal component analysis (PCA) and 

squared cross correlation (R2). Extracted features were 

evaluated using a linear discriminant analysis (LDA) classifier, 

resulting in an average decoding accuracy about 50%, which is 

significantly higher than the guess level and the 95% confidence 

level of guess. The preliminary results demonstrate the great 

potential of extracting features from different MIs from same 

hands to generate control signals with more degrees of freedom 

(DOF) for non-invasive brain-computer interface applications. 

In addition, for movement related applications, especially for 

neuroprosthesis, the present study may facilitate the 

development of a non-invasive BCI, which is highly intuitive and 

based on users’ spontaneous intentions. 

I. INTRODUCTION 

Noninvasive brain computer interface (BCI) techniques 
decode electromagnetic signals measured from the human 
brain, and translate them into control commands for computer 
programs or external devices [1]. These techniques build an 
alternative channel between the user’s brain and outer 
environment, bypassing normal motor output pathways [2]. 
This could be useful for people suffering from severe motor 
disability to regain communication and control in daily life [3], 
[4]. 

The field of BCI research is growing rapidly with 
advancements in biomedical devices and signal processing 
techniques. Various neurophysiological patterns have been 
identified and utilized as control features for BCI systems, 
including mu rhythms induced in motor imagery (MI) [5], 
event-related P300 [6], steady state visual evoked potentials 
(SSVEP) [7], and many others. Among them, MI related 
patterns have been widely used in movement related 
applications, such as cursor task [2], [8]. 

While various MI-based BCIs have been developed, one 
remaining challenge is the limited number of features 
available to produce enough control signals, which largely 

 
* The work was supported in part by NSF CAREER ECCS-0955260, 

OCAST HR09-125S, and DOT-FAA10-G-008. 

R. Xiao is with the School of Electrical and Computer Engineering, 

University of Oklahoma, Norman, OK 73019 (corresponding author to 

provide phone: 4053253774; fax: 4053257066; e-mail: ranxiao@ou.edu). 

K. Liao is with the School of Electrical and Computer Engineering, 

University of Oklahoma, Norman, OK 73019 (e-mail: keliao@ou.edu). 

L. Ding is with the School of Electrical and Computer Engineering and 

Center for Biomedical Engineering, University of Oklahoma, Norman, OK 

73019 (e-mail: leiding@ou.edu). 

defines the complexity of applications. Recent studies 
implemented MI from hands and other body parts to generate 
control signals with three degrees of freedom (DOFs) to move 
a cursor on computer screens [8]. However, for applications 
with more complexities, such as neuroprosthesis, it is far from 
enough. Miller et al. (2009) decoded individual finger 
movements from one hand using electrocorticography (ECoG) 
[9], suggesting that finer hand movements could be 
distinguished from electrical signals to generate more control 
features.  Due to the similarity between motor imagery and 
real movements [10], it provides a promising way to increase 
DOFs and number of control features produced by MI. 
However, ECoG is an invasive technique and surgical 
implantation of ECoG electrodes poses a potential risk for 
BCI users [11]. 

In the present study, we investigated the feasibility of 
discriminating different types of MIs on both hands using the 
non-invasive scalp EEG through exploring underlying 
features produced by MIs of thumb and fist from each hand. 
Variance structures in EEG spectra were analyzed by 
principal component analysis (PCA) at each channel and a 
unique spectral structure was identified on which different 
projections of EEG data from different MIs were suggested. 
Furthermore, squared cross correlations between each pair of 
MIs were calculated to identify spatial projection difference 
of this spectral component between two MIs. The extracted 
features were then validated using LDA classifiers. 

II. METHODOLOGY 

A. Subjects and Materials 

Three subjects volunteered to participate in the study (all 
males, aged 30 ± 2 and right-handed). Two of them had 
experience in MI-based BCI, who participated in research of 
one-dimensional cursor tasks [2]. The third subject was naïve 
to any BCI paradigms. All of them provided informed 
consents.  

Experiments were conducted in a shielded chamber room 
under dim light. Subjects were seated in a comfortable 
armchair with their arms semi-rested. EEG data were recorded 
using EGI's Geodesic EEG System 300 (GES 300) and a 
128-electrode HydroCel Geodesic Sensor Net (HCGSN) 
(http://www.egi.com). Signals were digitized at 1000 Hz, 
referenced to an inactive electrode Cz. During recording, 
subjects were instructed to sit still and avoid movements to 
reduce motion artifacts. BCI2000, a general-purpose system 
for BCI research [12], was used to present stimuli to subjects 
through a LCD monitor. It also streamed EEG data to 
computers for storage, as well as corresponding event markers 
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and time stamps. During recordings, no source filters were 
applied to raw EEG signals. 

B. Experimental Design 

Stimuli were presented in a sequence of left thumb 
movement (LTM), MI of left thumb (LT), left fist movement 
(LFM), MI of left fist (LF), right thumb movement (RTM), MI 
of right thumb (RT), right fist movement (RFM), MI of right 
fist (RF), and fixation (Fig. 1). Real-movement cues were 
included in the design to facilitate subjects’ adaption to motor 
imagination, because two subjects reported having difficulties 
following MI cues alone during training sessions. Each 
condition lasted 3 seconds, followed by 2 seconds of blank 
screen for necessary blinks or swallowing. The whole 
sequence was repeated 40 times in one session, resulting in 40 
trials for each condition and 360 trials in total. In each 
condition, subjects were instructed to perform either real 
movements or kinesthetic MI indicated by cues. Trials related 
to fixations were counted as resting conditions. During this 
period, subjects sit still and stared at the fixation cross on 
screen. Only trials related to MIs of thumb and fist and trials 
from resting conditions were used for subsequent processing. 
The first subject completed 7 experimental sessions, and other 
two subjects completed 3 sessions each. 

C. Data Preprocessing 

EEGLAB [13] was used for preprocessing the acquired 
EEG data. EEG raw data recorded were first down-sampled to 
256 Hz to reduce computational load. Then EEG data from 
each channel were re-referenced to the common average 
reference (CAR) obtained across all channels to increase 
signal-to-noise ratio (SNR) [14]: 
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where the common average referenced potential (PCAR) on nth 
channel was computed by subtracting the recorded potential 
on nth channel (P) to the average potential across all N 
channels at each time t.  

Bad channels were rejected using Kurtosis method in 
EEGLAB and interpolated using averaged data from 
surrounding channels. A band-pass filter (0.03 Hz ~ 70 Hz) 
and a notch filter (60 Hz) were applied to remove DC offset 
and reduce influences from power lines. Three-second epoch 
data corresponding to the length of trials were extracted and 
categorized according to conditions. Data from trials of four 
MIs and resting condition were used for subsequent 
processing.  

D. Spectral Principal Component Analysis 

Time-series EEG trial data were firstly transferred to 
frequency domain by calculating power spectrum density 
(PSD) using Welch’s method [15]. Secondly, at each channel, 
PCA was performed on EEG spectral data pooled from trials 
related to four MI conditions and resting condition to extract 
useful spectral features [9]. PCA rotated the original 
coordinate system to maximize variance of each principal 
component (PC) in spectra and minimize covariance among 
PCs [16]. In other words, PCA constructed a rotation matrix, 

which diagonalized the covariance matrix of original data. In 
this way, original EEG spectral data were decomposed into 
various PCs, and spectral features mostly related to all tasks, 
but indicating difference for different tasks, were identified. 

The process of spectral PCA involved multiple steps. 
Firstly, covariance matrix of EEG spectral data was 
constructed, revealing inter-frequency correlations and 
inner-frequency variances produced by trials from all 
conditions. Secondly, eigenvectors of the covariance matrix 
were computed, which decomposed EEG spectral data into 
spectral PCs that reflect spectral features related to MIs. 
Spectral PCs were sorted by corresponding eigenvalues in a 
descending order. Finally, EEG spectral data from trials of 
different MIs were projected onto identified spectral PCs on 
each channel and their projection weights and associated 
spatial distributions of these weights were calculated for 
different MIs.   

Only projection weights of the first five PCs were selected 

for consideration, since they already accounted for the most 

variation within the EEG spectral data (e.g. 99.97% from 

Session 1 of Subject 1). Based on projection weights and their 

spatial patterns, the PC indicating the most distinguishable 

features among different MIs was identified. 

E. Squared Cross Correlation and Classification 

Squared Cross correlation (R
2
) evaluated the proportion of 

variance accounted by inter-condition trials to the total 
variance [17]. It was adopted to reveal spatial difference 
related to different tasks. Four MI conditions (LT, LF, RT, 
and RF) in the present study suggested six MI pairs. For each 
pair, R

2
 value was calculated on each channel using data of 

projection weights of both conditions on the most 
distinguishable PC. R

2
 values from all channels were then 

mapped onto corresponding channel locations on the scalp. 
The formula for calculating cross correlation was: 
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where m1 and m2 denoted means of projection weights of two 
conditions and n1 and n2 denoted numbers of trials from each 
condition. σtotal

2
 was the group variance and ntotal was the total 

number of trials from both conditions. R
2
 value was calculated 

by dividing squared difference of two condition means on 
group variance. The second term in the equation was to 
correct unbalanced numbers of trials in two conditions. 
Channels were rearranged based on their corresponding R

2
 

values for each MI pair. Only the channels located above 

 

Figure 1. Experimental Design. Each sequence of stimulus starts from 

LTM and ends with fixation. Each stimulus lasted for 3 seconds and 

inter-stimulus interval was 2 seconds. 
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cortical areas associated with motor functions and with large 
R

2
 values were selected as feature channels. 

In order to evaluate whether identified spatio-spectral 

features (i.e., spectral PC over feature channels) provided 

indicative information in decoding different MIs, the linear 

discriminant analysis (LDA) classifier was used to 

simultaneously classify four different types of MIs (LT, LF, 

RT, and RF) using a five-fold cross validation. Eighty percent 

of trials were used to train LDA classifiers, and the rest were 

used for test. Each test trial went through six binary LDA 

classifiers, which were for each pair of conditions. Each LDA 

classifier voted for one condition and the one with most votes 

was the final label for the test trial, which was compared to the 

true label for the calculation of decoding accuracy in each MI. 

Average accuracy was calculated by averaging decoding 

accuracies from four MIs. Trials were randomly permuted 50 

times for training and testing to yield mean accuracy for each 

condition. The guess level of four-class problems (i.e., 25%) 

and its 95% confidence interval (CI) were calculated [18], 

which served as references for the significance of 

classification results.  

III. EXPERIMENTAL RESULTS 

A.  PCA Results 

Fig. 2(a) presents the average elements (the magnitudes of 
eigenvectors) of the first five principal components in spectral 
domain. Results from C3 (on left motor cortex) and C4 (on 
right motor cortex) were chosen to display since the motor 
cortex is one of the most important brain areas in MI [10]. 
Different PCs suggest distinct spectral patterns, revealing 
different underlying physiological information in spectral 
domain. Comparing PC elements on C3 and C4, the general 
structures in the elements of same PCs are similar, while they 
show variations in magnitudes, especially for the second, third 
and fifth PCs. The first spectral PC accounts for the largest 
portion of variance in EEG spectral data [16], which suggests 
spectral peaks at 12 Hz and 24 Hz of mu and beta rhythms.  

Fig. 2(b) visualizes the average projection weights of EEG 
data from four MIs and resting condition on the first five PCs.  
The projection weights on the first PC indicate the most 

distinguishable patterns among different MIs, as well as 
between MIs and resting condition. While there are some 
variations on other PCs as well, the difference is relatively 
small. This might suggest that the most useful information for 
discriminating different MIs resides in the first PC. 
Comparing projection weights on the first PC at different 
channels, it also shows distinct patterns, which indicates 
distinguishable spectral patterns in different MIs exist in 
multiple channels. It facilitates the idea to explore 
spatio-spectral patterns for decoding different MIs.  

B. R
2
 Topography and Classification Results 

Fig. 3 presents the R
2

 topographies for each MI pair. It is 
notable that the magnitudes of R

2
 vary across different pairs, 

with largest R
2

 between LF and RT, and smallest R
2
 between 

LT and LF. Most observable differences in spatio-spectral 
patterns related to the first PC show on the scalp over brain 
areas related to motor functions in all MI pairs. It further 
indicates the different spatial patterns among different MI 
pairs, which suggests distinguishable patterns among four 
types of MIs. 

Fig. 4 shows the classification results for each MI and their 
average in a four-class MI decoding problem with the use of 
the identified spatio-spectral pattern. The results show the 

Figure 2. (a) Average elements of the first five PCs from Subject 1; 

(b) Average projection weights of four MIs and resting condition on 

the first five PCs from the same subject. 

 

Figure 3. R2 topographies of six MI pairs from Subject 1. Black dots 

indicate channel locations. Colorbar represents R2 values. 

 

Figure 4. Average decoding accuracy across 3 subjects for each MI 

type and average decoding accuracy in all trials regardless of 

conditions. Black solid line indicates 4-class guess level. Dashed 

line indicates upper boundary of 95% CI of the guess level.  
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mean decoding accuracies of each condition, obtained from 
50 random permutations of all trials. The decoding accuracies 
vary across different MIs, i.e., LT: 49.4%, LF: 50%, RT: 
52.4%, and RF: 40.1%. The decoding accuracies for all 
conditions are significantly higher than the guess level (25%) 
and the upper boundary at the 95% CI (32%). The average 
decoding accuracy reaches up to 48%, which is also 
significantly higher than the guess level and the upper 
boundary of 95% CI. 

IV. DISCUSSION 

In the present study, we explored the underlying 
spatio-spectral features related to different MIs of thumb and 
fist on both hands using EEG. PCA and cross correlation 
analysis were used in extracting corresponding spectral and 
spatial features, which were further validated by the LDA 
classifier with 50 times of random permutations. The obtained 
results (48%) demonstrated the existence of distinguishable 
features about different MIs of one hand in noninvasive EEG.  

Unlike other MI-based BCI studies [1], [2], [19], which 
only considered MIs from different hands, the present study 
aims to explore distinguishable features related to MIs of finer 
movements in one hand, providing a possible mean to increase 
limited DOFs of control signals for MI-based BCIs. 
Compared to ECoG-based studies [9], experiments using 
scalp EEGs are towards a non-invasive BCI, with signals 
much lower in SNRs and spatial resolutions. Furthermore, 
data in scalp EEG were from different MI types instead of real 
movements, which further decreased SNRs in data [10]. These 
aspects impose difficulties in non-invasive EEG-based BCIs. 
In addition, MIs from both hands, rather than just from one 
hand, are included to increase DOFs in the present study. 
Despite of these difficulties, with the proposed method, 
extracted spatio-spectral features yield a decoding accuracy 
significantly higher than the guess level and 95% confidence 
level when evaluated by simple LDA classifiers.   

It is worth to note that extracted features are only on the 
first PC in this preliminary study. Other PCs can also contain 
information useful for decoding different MIs. Spatial and 
spectral features from combination of different PCs may 
further improve the decoding accuracy. Moreover, since only 
a simple classifier is used in the present study, more advanced 
classifiers, such as support vector machine (SVM) classifier 
[20], can be used to improve decoding accuracy. In addition, 
MI-based BCIs usually show progressive performance 
improvements along with training process [2], [4]. More 
robust features are possible to be extracted, when including 
more sessions in the future. 

In conclusion, we investigated the feasibility of 
discriminating four different MI types from both hands, with 
two MIs from the one hand, using non-invasive scalp EEG. 
With the proposed methods, a spectral component was 
identified and showed different patterns and spatial 
distributions in different MIs. Using this new feature, an 
average decoding accuracy significantly higher than the guess 
level and 95% confidence level for four types of MIs was 
achieved when evaluated by a LDA classifier. Our preliminary 
results demonstrate the potential of a new spatio-spectral 
feature to generate more control signals for non-invasive BCI 

applications. In addition, for movement related applications, 
especially for neuroprosthesis, the present study might 
facilitate the development of an intuitive BCI paradigm, 
which depends on users’ spontaneous intentions. 
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