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Abstract— For synchronous brain-computer interface (BCI)
paradigms tasks that utilize visual cues to direct the user, the
neural signals extracted by the computer are representative of
voluntary modulation as well as evoked responses. For these
paradigms, the evoked potential is often overlooked as a source
of artifact. In this paper, we put forth the hypothesis that cue
priming, as a mechanism for attentional gating, is predictive
of motor imagery performance, and thus a viable option for
self-paced (asynchronous) BCI applications. We approximate
attention by the amplitude features of visually evoked potentials
(VEP)s found using two methods: trial matching to an average
VEP template, and component matching to a VEP template
defined using independent component analysis (ICA). Templates
were used to rank trials that display high vs. low levels of
fixation. Our results show that subject fixation, measured by
VEP response, fails as a predictor of successful motor-imagery
task completion. The implications for the BCI community and
the possibilities for alternative cueing methods are given in the
conclusions.

I. INTRODUCTION

Motor imagery is a specific type of mental rehearsal
applied for BCI use, in which the intention of the subject is
determined by their imagination of movement of a specific
part of the body e.g. feet, arms, tongue, etc. During mo-
tor imagery, the voluntary modulations of the sensorimotor
rhythms in the α (8-12 Hz) and β (18-25 Hz) ranges are the
target signals to be extracted and interpreted. Visually evoked
potentials (VEP)s are also present in the scalp electroen-
cephalogram (EEG) as a result of the cue which is designed
to prompt a response from the user. In motor imagery tasks,
the evoked response may be considered a source of artifact
and removed or ignored in further processing.

The majority of motor imagery BCIs are defined as
synchronous; the pace is set by the computer, and thus the
timing of imagery is known by the classification algorithm.
Because of the nature of BCI research and application, there
are few overt cues about the attentional state of the user. To
move towards the goal of a self-paced BCI, an additional
control signal is needed from the subject.

In this study, we seek to infer a user’s intent to perform
motor imagery from their attentiveness to a pre-task visual
cue. Visual attention is controlled by a distributed network
of cortical and subcortical areas which act to provide “bias
signals” that enhance or suppress the responses to visual
stimuli. [1]. We focus on two components of the VEP for
our assessment of attention: the N2 and the P3. The N2
is a negative-going wave that peaks around 200 ms and
is comprised of multiple components. The N2c component
over posterior areas is evident when a stimulus must be
identified for classification into multiple target categories

[2]. This component is modulated by conscious perception
through an increase in the negativity of the N2 peak [3]. The
P300 is a positive-going wave with a maximum over midline
centro-parietal regions. Known as an “oddball response”, it
has amplitude inversely proportional to the frequency of the
target stimuli. Importantly for our case, the latency of this
peak is negatively correlated with the level of attention. [2].

We know that as conscious perception of a stimulus
changes, the response recorded at the level of the scalp also
changes [2], [3], [4]. We seek to ask two basic questions:
• Is there a correlation between the distribution of evoked

responses and the production of sensorimotor rhythm
modulation to control a motor imagery task correctly?

• Can we apply some EEG signature of visual attention
to the gating of a BCI paradigm reliably in real time?

To address this first question, the establishment of a template
that is characteristic of a “good” VEP is required. We attempt
two different methods of template building, and assess two
different components of the VEP for indications of consistent
correlations between VEP features and motor imagery per-
formance. The answer to the second question is more difficult
because it requires the single-shot identification of trials
corresponding to a template, a difficult task for such highly
variable data. The answer to this question is critical for
assessing whether this type of visual gate makes it possible
for a BCI user to self-pace the system.

II. METHODS

A. Experimental Setup

A commercial EEG recording system (Guger technologies,
www.gtec.at) was used to acquire data from subjects. Data
was sampled at 256 Hz and bandpass filtered at 0.1-30 Hz.
Data was recorded with use of Simulink environment in
MATLAB and stored on a Dell Latitude E6400 notebook
computer running Windows XP. Subject was seated com-
fortably in a chair facing a LCD monitor which displayed
cueing and feedback information. Experimental protocol was
approved by the Institutional Review Board of Penn State
University.

B. BCI Paradigm

Nine subjects, all male, aged 18-37 participated in a
cue-paced, one-dimensional center-out task. Channels FC3,
FC4, C5, C3, C1, C2, C4, C6, CP3, CP4, P5, P3, P1, P2,
P4, P6, PO3, and PO4 were recorded, in addition to three
electrooculogram (EOG) electrodes placed lateral to the left
and right eyes as well as just above the nasion. All channels
were referenced to linked earlobes, and ground was placed at
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FPz. Each subject performed four sessions over a two week
period. Each session lasted approximately 1.5 hours.

During each session, the subject performed five runs of
60 trials each, divided equally between left, right, and no-
target cues which were presented in a randomized sequence.
The first run, from here on called the training run, was
used to train the classifier so the remaining four testing
runs could be used to give feedback to the subject as they
performed the task. During the motor imagery tasks, the
subject was cued by an arrow pointing in the left or right
direction. After observation of the cue, the subjects were
instructed to perform an object-oriented grasping imagery
task for the arm corresponding to the direction of the arrow
being displayed. Feedback and performance on the task
were determined using a linear group mean based classifier
described previously [5]. Over the four sessions, each subject
completed 16 test runs consisting of 960 trials, with 320 trials
per cue type. The data belonging to the 320 trials of left and
right cues were analyzed offline using the methods described
below.

C. Preprocessing

Artifact reduction was accomplished by linear regression,
as detailed in [6]. This least-squares method assumes the
linear superposition of neural source and artifact data to
produce the measured signal. Assuming the independence
of the artifact sources and the neural sources, training data
can be used to find a weight matrix, which can be utilized in
online BCI operation to remove eye-related noise from the
recorded signal.

D. VEP Template Building

Using the data recorded during a one-dimensional cursor
control task with feedback, we sought to quantify subject
fixation by performing correlation of each trial with a
VEP typical of attentive fixation behavior. We defined this
evoked potential using two different techniques: averaging
over trials, and component separation through Independent
Component Analysis (ICA).

1) Averaging of VEPs: The first template for a “rep-
resentative” VEP was developed by averaging over trials
corresponding to each cue type. This results in an average
of the varied examples of VEP, which while computationally
efficient, loses some of the most critical information as a
result of the averaging. Average templates were established
for the channels P3, P4, PO3, and PO4. The times of peaks
N2 and P3 in these templates were marked for further
processing.

2) VEP component identification through ICA: The sec-
ond method used to extract evoked potentials from the EEG
was to perform blind source separation with ICA. The data
input to the ICA algorithm was demeaned and detrended.
The FastICA algorithm, described by Hyvärinen [7] and
implemented in the software EEGLAB [8], was used for this
purpose. This algorithm is a computationally efficient way
to separate multichannel data into maximally independent

components through a linear unmixing. With this transfor-
mation, we can locate components of the EEG that spatially
and temporally correspond to a VEP. Two components were
manually selected: an N2 component having an occipito-
temporal locus and negative-going wave 200 ms following
the cue, and a P3 component having a medial centro-parietal
locus and broadly peaking in the 300-400 ms range.

E. Trial Ranking Through Template Matching

Left and right cued trials were ranked for each subject
by template (average/ICA) and VEP feature (N2/P3). In the
case of average template matching, individual trials of the
original data in channels P3, P4, PO3, and PO4 were ranked
by amplitude at the N2 and P3 peaks as defined in their
associated templates. In the case of ICA component match-
ing, the independent components in each trial, following
unmixing by the transformation matrix, were matched to the
VEP component template. Following each of the methods of
trial ranking, the trials were grouped into a high amplitude
(the top 33% of the trials) bin deemed the “good fixation”
group, and low amplitude (the bottom 33% of the trials) bin
deemed the “bad fixation” group. The remaining trials were
excluded from further analysis.

From each of these two templates and two ranking criteria,
we sought to assess how well the subject performed on the
trial (approximated by the feedback at the end of that trial)
as a function of matching to the VEP template. Because
the dependent variable, the feedback, was non-normally
distributed, we chose to perform a non-parametric test of
statistical inference. To determine whether the difference in
the means was significantly greater than random fluctua-
tion, the data was put through a permutation test. We first
computed the test statistic Tobs, the differences between the
means of the feedback of the two fixation groups. Then
we shuffled the labels of the data and found the difference
in the means Tk for each k permutation, repeating the
permutation procedure 1000 times. Two-sided p-values were
computed for each combination of cues, templates, features,
and channels/components as in (1). Significant p-values were
identified at the α/2 = .025 level.

p =

∑
1000
k=1 (H(|Tk| − |Tobs|))

1000
(1)

Here, H is the Heaviside function. The process of trial
ranking and permutation testing for significance is shown
for a generic case of template and feature in Fig. 1.

III. RESULTS

A. BCI Performance

As reported previously [5], the operation of the BCI was
successful for eight of the nine subjects, achieving a range
of accuracies at classifying left vs. right tasks of 64.2-
97.8%. Thus, the feedback was a good indication of subject
performance on the task. Subject 2, with a 49.5% success
rate, was omitted from further analysis.
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Fig. 1. This flowchart shows an example sorting right cue trials by template matching. The procedure was repeated for both cue types (right, left), both
templates (average, ICA), and both VEP waveform features (N2/P3 amplitude).

Fig. 2. Templates for eight subjects, with relevant peaks and intervals
highlighted for subject 7. The red markers indicate peak N2, and the green
marker P3. The left figure shows an example template from the averaging
procedure. In this case, the template was calculated by averaging all the
trials in which the subject was cued by a right arrow, recorded from channel
P3. The right figure shows the VEP source identified by ICA as having an
occipito-temporal origin with a pronounced N2 peak.

B. Template Building

For each of the subjects, average templates were built
separately for channels P3, P4, PO3, and PO4, and further
specialized by left or right cue type. This resulted in eight
different average templates, of which the one corresponding
to trials with a right cue in channel P3 can be seen in Fig.
2a. For each of these templates, the times of peaks N2 and
P3 were marked. Templates were also generated through
ICA decomposition, although only two components were
retained for each cue type from the decomposition of all
18 channels. The right occipito-temporal (N2) ICA template
for each subject is shown in Fig. 2b.

C. Template Matching and Significance of Fixation

For the average template, channels P3, P4, PO3, and PO4
were matched to their respective templates using the two
different VEP features of the template. The result of one
such matching procedure, shown in Fig. 3a, gives the means
and standard deviations of the right trials from channel
P3 belonging to the “good fixation” and “bad fixation”
groups, sorted by their amplitude at the time of the N2
peak. Similarly, 3b shows the mean and standard deviations

Fig. 3. Trial sorting by matching to template. (a) Trials sorted by amplitude
of the N2 wave (with range outlined in the dashed grey box) of the average
template, channel P3. (b) Unmixed trial components sorted by peak N2
with latency given by the occipito-temporal ICA component template. In
both cases, the mean and standard deviations for the 33% of trials with the
negative-most amplitude in these ranges are shown in blue, signifying good
fixation, and the mean and standard deviation for the 33% of trials with the
positive-most amplitude are shown in red.

of occipito-temporal trial components with high and low
matching to that ICA template.

Permutation tests performed on the data as described in
the methods failed to find consistent VEP features among
subjects that predicted success at performing motor imagery
in the following seconds. Shown in Table 1 are the results of
the attention-based grouping of right cues. For the average
P4 template of subject 1, there was a significant increase
in participant performance on right cued trials predicted by
amplitude of the N2 peak. Besides this finding, no other
significant correlations between template matching and trial
feedback were found.

IV. CONCLUSION

Fixation to a visual stimulus, representing a momentary
period of visual attention, and the subsequent evoked po-
tential is not reliably predictive for performance in a motor-
imagery BCI task. This finding has two implications for BCI
applications.
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TABLE I
RESULTS OF THE PERMUTATION TEST FOR EACH SUBJECT FROM TRIALS WITH RIGHT CUES.

Template Average ICA
Feature N2 P3 N2 P3
Chan/Comp P3 P4 PO3 PO4 P3 P4 PO3 PO4 N2 P3

Subject

1 0.691 0.021* 0.785 0.185 0.999 0.860 0.515 0.774 0.460 0.784
2 0.314 0.296 0.249 0.790 0.196 0.363 0.470 0.533 0.294 0.827
3 0.472 0.552 0.346 0.750 0.775 0.415 0.890 0.945 0.380 0.130
4 0.795 0.786 0.883 0.846 0.794 0.948 0.927 0.275 0.752 0.025
5 0.981 0.817 0.255 0.419 0.688 0.704 0.380 0.363 0.876 0.698
6 0.447 0.572 0.475 0.791 0.599 0.415 0.407 0.630 0.724 0.924
7 0.535 0.129 0.532 0.229 0.584 0.460 0.620 0.627 0.684 0.036
8 0.112 0.040 0.026 0.109 0.627 0.650 0.777 0.559 0.384 0.161

The values in the 10 columns represent the probability that the mean feedback of the original “good fixation” trials minus the “poor fixation” trials
was greater than 97.5% of the mean difference for the 1000 permuted groups. An asterisk indicates a significant improvement in BCI performance
associated with good fixation.

First, it implies that fixation is not as critical to the
success of the motor imagery paradigm as it has previously
been thought, evidenced by synchronous designs that utilize
some form of fixation for attention. While it would require
eye tracking to precisely monitor subject fixation, we show
that the variation in EEG signatures of fixation do not
correlate with the outcome of the trial. This is critical when
considering the practicality of BCIs for real-world use, where
it is undesirable to completely monopolize patient attention,
leaving them unable to interact with other parts of their
environment.

Unfortunately, it also means that this type of visual prob-
ing for subject attention is not a viable option for creating an
asynchronous BCI system as we have envisioned it with the
current design. As there is no concurrent change in the user’s
ability to perform the task as their state of fixation changes,
the practicality of using the VEP as a signal of the user’s
attention level is unlikely. However, it does leave open the
possibility for probing for attention through other forms of
visual stimulation, such as using more intense stimuli for a
more robust response, or presenting the stimuli in an irregular
fashion, to increase the amplitude of the P300 potential.

The second question posed in our introduction goes unan-
swered; although these procedures for assessing attention and
gating subsequent motor imagery are able to be implemented
online, the high variability of the background EEG data
makes single-shot identification of attention a difficult task.
Possibilities for reducing the background signal and therefore

improving the signal to noise ratio of the VEP include
filtering of the significant alpha component, which, when
phase locked to the stimulus could produce substantial bias,
as well as cueing for attention with different variations of
visual and auditory stimuli.
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