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Abstract—A brain computer interface (BCI) system was 

implemented by recording electrocorticographic signals (ECoG) 

from the motor cortex of a Rhesus macaque.  These signals were 

used to control two-dimensional cursor movements in a 

standard center-out task, utilizing an optimal linear estimation 

(OLE) method.  We examined the time course over which a 

monkey could acquire accurate control when operating in a co-

adaptive training scheme.  Accurate and maintained control 

was achieved after 4-5 days.  We then held the decode 

parameters constant and observed stable control over the next 

28 days.  We also investigated the underlying neural strategy 

employed for control, asking whether neural features that were 

correlated with a given kinematic output (e.g. velocity in a 

certain direction) were clustered anatomically, and whether the 

features were coordinated or conflicting in their contributions 

to the control signal.   

I. INTRODUCTION 

Electrocorticography (ECoG) holds promise as a 
technique for implementing brain-computer interface (BCI) 
and neural prosthetic control systems.  The primary 
advantages of ECoG are its minimally invasive nature (as 
opposed to penetrating electrodes), and its hypothesized 
stability over time (see [1] for review).  Since ECoG 
electrodes record signals from large populations of neurons, 
these recordings are not dependent upon the integrity and 
reliability of individual cells.  As such, BCI systems based 
on ECoG may remain robust and stable, without the need for 
daily updating and retraining of decoders.  One possible 
disadvantage of an ECoG-based system is the potential 
challenge presented to a user learning to operate it.  While 
individual neurons in motor cortical areas are often highly 
tuned to intended movement direction [2][3][4][5][6], broad 
populations may not present the same level of resolution 
when recorded in the aggregate.  The distributed 
representation of movement parameters recordable at the 
single unit level may not be accessible in an ECoG-based 
BCI.  Alternatively, a more artificial control strategy, 
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perhaps based on broad somatotopic anatomical divisions, 
may be necessary to achieve accurate control [7]. 

 Previous studies have begun to address these issues, 
producing generally encouraging results.  Chao et al. [8] 
demonstrated that ECoG signals can retain both their 
magnitude and representational content over long periods.  
Other studies have demonstrated that humans can learn to 
intentionally modulate ECoG signals for the purpose of 1D 
[9] or 2D  [7] cursor control.  Rouse and Moran [10] showed 
that monkeys can learn to de-correlate epidural ECoG 
signals from 2 arbitrarily chosen electrodes to gain 2D cursor 
control.  It has also been shown that ECoG signals can 
contain highly accurate information about the details of 
performed movements [11][12][13][14][15].  These studies 
support the feasibility of extracting natural control signals 
from ECoG recordings and suggest that implementation of a 
robust, learnable, and intuitive ECoG-based BCI system is a 
viable goal. 

 In this study we focus on three aspects of ECoG-based 
BCI control.  First, we address learnability by examining the 
time course to acquire 2D cursor control with a neural 
decoder utilizing a large number of ECoG signal features.  
Second, to examine stability we froze our BCI decoder and 
observed performance over multiple days.  Third, we 
explored the strategy the animal employed to control the 
decoder by examining which neural features, and by 
extension which cortical areas, contributed substantially to 
cursor control. 

II. MATERIALS AND METHODS 

A. Surgery and Implant 

All procedures described here were approved by the 
Institutional Animal Care and Use Committee of the 
University of Pittsburgh and were in accordance with the 
National Institutes of Health's Guidelines for the Care and 
Use of Laboratory Animals.  Briefly, a male Rhesus macaque 
(mucaca mulatta) was anesthetized, and a craniotomy was 
opened over the left motor and premotor cortex.  The dura 
was peeled back to expose an area approximately 2x2 cm 
between the arcuate and central sulci.  A custom-built 15-
channel ECoG grid (PMT Corp, Chanhassen, MN, USA) 
was placed directly on the exposed brain surface (Fig. 1), 
and the dura and the bone were reapproximated.  Wires from 
the grid were connected to a Cereport pedestal connector 
(Blackrock Microsystems) affixed to the skull. 
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Figure 1.  Placement of 

the ECoG grid over the 

left primary motor cortex 

(M1). The reference 

electrode (e4) and the 

ground (e13) are in the 

upper right and lower 

left, respectively.   

 

Ar S: Arcuate sulcus. 

Ce S: Central sulcus 

 

B. Neural Recording and Decoding 

  Signals from the ECoG grid were recorded with a 
g.USBamp Biosignal Amplifier (g.tec Medical Engineering), 
and sampled at 1200 Hz.  The signals were filtered and 
processed using the Craniux Brain Computer Interface 
system [16].  Spectral estimation was performed using the 
Burg AR method [17] over the 40 to 180 Hz range (25th 
order, 10 Hz band width).  These gamma and high gamma 
bands were chosen because they are typically spatially 
localized and informative about underlying neural processes 
[18][19][20].  Estimates were calculated every 33 ms using a 
sliding window of 300 ms of raw data.  AR data were log-
transformed, then normalized to pseudo Z-scores relative to 
a baseline condition [16].  These spectral estimates for each 
frequency band were used as the neural features for BCI 
control.  Of the 15 channels available on the grid, one was 
used for a ground (e13), one for reference (e4), and electrical 
connectivity to a third (e2) was lost before experiments 
began.  These electrodes were removed from the neural 
feature set used for online control.  The remaining features 
(12 electrodes x 14 bands = 168 in total) were used for 
training, decoding, and control. 

The neural decoder part of the BCI system employed the 
optimal linear estimation (OLE) algorithm [21] to determine 
a mapping between these neural features and cursor 
movement.   This mapping took the form of a matrix of 
weights (W) to be applied to the neural features (f) for 
decoding, i.e. the two dimensions of cursor movement 

velocity ( v̂ ) were each a weighted sum of neural feature 

input, based on Equation 1.   The decoding weights  were 
calculated using the optimal linear estimator (OLE) 
algorithm based on Equation 2:  

     fWv ˆ            (1) 

     VFW


           (2) 

where V and F are matrices representing the desired 
cursor movement direction and associated neural features, 
respectively. The desired cursor movement direction is the 
instantaneous unit vector pointing from the cursor to the 
target, averaged over a trial. The superscript “+” denotes 
pseudo-inverse of a matrix. Initial values for V and F were 
acquired from one block of trials where the monkey followed 
an automatically guided cursor with his hand.  Each 
subsequent update of the decoder used all trials from a single 
block (see below). 

C. Training and Task 

The monkey was trained to perform an 8-target, center-
out  BCI-driven cursor task.  The task was run in 40 trial 
blocks, and multiple blocks were run for each session (each 
testing day).  At the start of each trial, a cursor appeared at 
the center of the computer screen in front of the monkey.  
Simultaneously, a pseudo-randomly selected target appeared, 
chosen from a set of 8 possible targets centered around the 
cursor starting position.  During a 500 ms "hold" window 
immediately after target onset, the cursor was held fixed.  
Afterwards, the cursor was allowed to move under brain 
control.  The monkey was required to move the cursor to the 

displayed target within 3 seconds.  If the cursor overlapped 
with the target for 100-200 ms (randomly determined each 
trial), the trial was considered successful and the monkey 
was given an immediate water reward. 

Testing began on day 208 post-implant.  In the initial 
testing sessions, the task software guided training for brain 
control by actively moving the cursor directly to the target 
("active assist").  Following one fully assisted block (100% 
active assist) we trained the decoder, then reduced the 
amount of active assistance, that is, we computed a control 
signal that was a combination of the decoder output and the 
active assist.  Over the course of multiple blocks (spanning 
multiple days) we lowered the amount of assistance 
incrementally (between blocks), until the cursor was under 
full brain control (0% active assist).  The decision to lower 
the assist level was based on the success rate, such that high 
success rates over multiple blocks prompted a decrease in 
the assist level.  Active assist was not used after session 7, 
thus success rates reported for subsequent sessions represent 
proficiency with full brain signal-derived control.   

During the initial period of training, the decoding weights 
were updated periodically between blocks.  Updates 
consisted of a blending of old and new weight values, such 
that changes in the decoder were gradual [22].  We refer to 
this process of adapting the decoder, simultaneous with 
continued learning on the part of the animal, as "Co-
adaptation". 

D.  Analysis 

To determine whether the success rate was above chance 
for trials without active assist, we performed a test using the 
neural data from the 440 trials of session 18 (chosen for the 
session's high mean success rate of 93.0%).  We computed 
offline success rates using control signals generated from 
recorded ECoG signals and randomized decoder weights 
(decoder weights were randomly shuffled).  Shuffled trials 
were considered successful if at any point during the trial the 
cursor intersected with the target.  Shuffled success rates 
were generated 10000 times, yielding mean and maximum 
success rates of 12.3% and 28.6%, respectively.    Since no 
shuffled value exceeded 28.6%, we used this success rate as 
a conservative estimate of chance accuracy. 

We sought to quantify the accuracy of the control signals 
produced by the decoder.  We computed for each trial the 
mean vector represented by the control signal (for trials with 
active assist, the calculation was done before the addition of 
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Figure 2.  Performance measures over the course of all 24 sessions, 

spanning 33 days.  Tan bars indicate sessions of interest described in 

the text.  (A) The success rate for each block of 40 trials (green) is 

shown for all blocks run, along with the amount of active assist (red) 

employed for each block.  (B) For each trial, the difference between 

the start-to-target vector and the vector sum of the control signals was 

computed.   The mean angle difference for each block is shown (blue) 

surrounded by the 95% confidence interval (gray).  The shuffled 

mean for each block (red) is shown for comparison. 

active assist), and compared it to the desired cursor 
movement vector pointing from the starting position to the 
target (Fig. 2B).  To determine significance, the distribution 
of these angle differences over a block was compared to a 
shuffled version of the same data (control signals and target 
vectors were each drawn randomly without replacement from 
the same set of trials).  Significance levels were determined 
by unpaired t-test. 

In order to analyze the degree of spatial clustering of the 
kinematic output, we first separated trials by target location, 
and considered only successful trials. The contribution 
vectors, which are the combined components of the x- and y- 
decoder control signals for each neural feature, were 
calculated as the product of the static decoder weight for 
each feature and the normalized AR data derived from neural 
activity. 

For each target direction, the control signal contribution 
vectors of each of the electrodes were summed across all 
features and all sampled time points during successful brain-
controlled cursor movement, and then divided by the total 
number of time points for an average contribution from each 
electrode. This metric allowed for analysis across trials of 
varying duration.  For each target direction, the net control 
signal was then calculated as the vector sum across all 
electrodes. 

III.    RESULTS 

A. Training 

The first step in training the BCI decoder was to present 
the center-out task for one block (40 trials) with 100% active 
assist (i.e., automatic computer control and no brain control). 
Subsequent to this first session, we ran partially-assisted 
trials, i.e. trials where the BCI output and the active assist 
were combined in varying ratios (Fig. 2A).  During the first 
part of the training period (sessions 1 through 5), we 
gradually updated the decoder weights by retraining the 
decoder after 1~3 blocks, and blending the old and new 
weights together.  

As shown in Fig. 2A, assistance was gradually lowered to 
0% over the course of 7 sessions (spanning 8 days).  
However, the monkey began to exhibit significant control as 
early as the third day.  To determine the accuracy of control, 
we computed the difference between the (unassisted) control 
signal vector produced by the BCI system and the starting 
point-to-target vector.  Control signal vectors were 
significantly more accurate than chance (p < 0.0005) on 
blocks 2 and 3 of session 3.  Significant vector accuracy was 
again seen on block 4 of session 4 (p < 0.00001), and this 
level of accuracy or higher was sustained from that point 
through the remainder of the study (Fig. 2B). 

B. Sustained Performance 

In total we ran 24 sessions spanning 33 days, beginning 
at day 208 post-implant.  Following the removal of all active 
assist (set to 0% starting with session 8) and decoder updates 
(which ceased after session 5) we tracked the task success 
rate over multiple weeks (Fig. 2A).  The mean success rate 

for this first unassisted session was 70.6%, well above the 
significance threshold of 28.6% (see Methods for details).  
Over the course of the following 25 days, only 4 individual 
blocks had success rates that were not significant (for 
instance block 6, with 17.5%, and block 8 with 10%, for 
session 13).  Note that these blocks of poor performance 
occurred on days where good performance was also seen (the 
maximum block success rate for session 13 was 87.5%), 
suggesting variable levels of engagement in the task, rather 
than an impaired ability to perform it. 

C. Control Strategy 

In order to investigate how the monkey modulated 
cortical activity to perform the task, we examined each 
feature’s contribution to the control signal for horizontal (x) 
and vertical (y) dimensions (Fig. 3).  Rightward movements 
appeared to have a strong contribution from a few electrodes 
(e.g. electrode e10, Fig. 3).  To investigate this further, we 
analyzed the signal components by electrode and target 
direction (Fig. 4).  For each direction and each electrode, we 
calculated a "contribution vector" as a measure of how 
strongly that electrode contributed to control in the target 
direction.  As shown in Fig. 4, 5 of the 8 target directions 
had one strong rightward driver and several widely dispersed 
contribution vectors of smaller magnitude attenuating that 
signal. Conversely, the other targets had contribution vectors 
all of significantly smaller magnitude, but produced a 
comparable net control vector due to very few individual 
components in directions opposing the vector to the target. 
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Figure 3.  Neural and kinematic features.  (A)  The spectral estimates 

derived from the neural signals on one electrode (e10) are shown as 

time-frequency spectrograms, arranged by target direction.  Data were 

taken from 200 trials (first 5 blocks of session 18), and each plot is an 

average of 25 trials.  The center inset shows the mean paths for the 

same trials.  (B)  Representative trial paths for the four cardinal (left) 

and four diagonal (right) targets. 

 

Figure 4.  Contribution vectors from successful trials (244 of 320) of 

one session (9). Each of the 8 clusters of vectors (dark and light blue) 

around the circle represents the averaged control signal contribution 

across the duration of the reach per electrode for all trials at that target 

location. The red vector represents the net contribution of all electrodes 

for that target type.  

 

IV. DISCUSSION 

Electrocorticography requires surgical implantation of 
recording electrodes, but is less prone to adverse tissue 
response than penetrating electrodes, and likely offers long-
term stability for neural recording [8][23], making it an 
attractive modality for BCI applications. In order to be 
viable, however, it must be learnable for the user as well as 
reliable over the long term.   

Consistent with previous results [10], we found that 
proficiency in the center-out task was achieved within 5 
days.  In this study, we employed a training strategy with a 
gradually updated decoder.  While continuous updating of 
decoder weights could result in a shifting neural-to-kinematic 
mapping that the monkey could not master, gradual co-
adaptation may assist acquisition of control by better 
matching the decoder to the neural signals as they change 
during the learning process.   

Long-term stability of ECoG recording has been 
demonstrated previously.  Chao et al. [8] showed that an 
offline decoder could reliably predict movement kinematics 
from ECoG signals for several months following initial 
training.  Here we extend this finding with the use of an 
online decoder trained in the context of a closed-loop task.  
The monkey learned to move a cursor by modulating neural 
activity, and the association between intended movement and 

neural modulation remained stable for approximately 4 
weeks and was reliably captured by our ECoG grid.  This 
was evident from the observations that the success rate 
remained high, and that the computed vectors remained 
highly correlated with correct movement direction. 

Regarding the organization of controlling neural features, 
this study shows preliminary evidence of a mixed control 
strategy that varied by direction.  We found that targets 
requiring movement down or right had contribution vectors 
of larger magnitudes and wider distribution than targets up or 
left.   This behavior (Fig. 4) suggests that the monkey’s 
chosen control scheme involves utilizing a main directional 
driver when applicable and attenuating its strength with 
opposing vectors, or else recruiting multiple lesser control 
features to achieve the same degree of strength and 
specificity in other directions. The ability to produce a net 
control signal from different distributions of component 
vectors suggests an underlying flexibility that could facilitate 
reliable, robust control over time. 
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