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Abstract— The detection of event-related potentials (ERPs)
in the electroencephalogram (EEG) signal has several real-
world applications, from cognitive state monitoring to brain-
computer interfaces. Current systems based on the detection
of ERPs only consider a single type of response to detect.
Hence, the classification methods that are considered for ERP
detection are binary classifiers (target vs. non target). Here
we investigated multiclass classification of single-trial evoked
responses during a rapid serial visual presentation task in which
short video clips were presented to fifteen observers. Each trial
contained potential targets that were human or non-human,
stationary or moving. The goal of the classification analysis was
to discriminate between three classes: moving human targets,
moving non-human targets, and non-moving human targets.
The analysis revealed that the mean volume under the ROC
surface of 0.878. These results suggest that it is possible to
efficiently discriminate between more than two types of evoked
responses using single-trial detection.

I. INTRODUCTION

The detection of evoked brain responses has evolved over
the years for different types of application thanks to machine
learning techniques that improve the detection of brain
responses like event-related potentials (ERPs). The detection
of ERPs is widely used for the creation of brain-computer
interfaces, like the P300 speller [1]. In classical ERP based
BCIs, a particular user interface is proposed to allow the
selection of more than two commands. Indeed, ERP based
BCIs do not assign the detection of an ERP to a command
but they code multiple commands thanks to a sequence of
several stimuli. For BCIs that offer the possibility to select
more than two commands, it is important to distinguish BCIs
that code several commands with the detection of a single
brain response, e.g. the P300 speller, and BCIs that assign a
command for each brain response, e.g. motor imagery based
BCI. For motor imagery BCI, it is possible to consider a
command for an imagery movement of different limbs, e.g. 4-
class motor imagery BCI with left-hand, right-hand, foot and
tongue actions [2].

Whereas it is possible to code several commands with
the detection of a single type of brain responses for BCI,
other types of paradigms, like rapid serial visual presentation
(RSVP) tasks, require the detection of several types of brain
responses to assign a visual stimulus to a particular class.
Indeed, RSVP tasks have been successfully used for target
detection [3], [4]. In this context, it is important to allow the
possibility to detect several types of targets. To achieve such
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a task, the class of targets should be different enough to evoke
ERP with different characteristics. After the presentation of a
stimulus to a subject, it is typically possible to detect several
peaks of different latencies and amplitudes in the EEG signal.
A highly investigated component is the P300, which is a
positive deflection of the ongoing EEG signal with a latency
of more than 300ms to an event [5]. In addition to the P300,
there exist other components like the N200, which is the
most distinct response to motion-onset [6]. The different
components of the ERP can depend on various parameters
like the meaning of the stimulus (target vs. non target), the
target probability, and the complexity of the choice [7], [5].

As the different components of an ERP may change in
relation to the presentation of a particular type of target, they
could be exploited as features for detection. In this study, we
investigated single-trial detection of several types of targets
using an RSVP task containing three types of visual stimuli:
moving human, moving non-human, and stationary human.
Classifier performance in this difficult task was precisely
quantified using the volume under the ROC hyper-surface
(VUS).

The remainder of the paper proceeds as follows. The
second section details to the experimental protocol. The
signal processing and evaluation methods are described in
the third section. The ERP waveforms and the results for the
binary and multiclass classifiers are presented in the fourth
section. Finally, the interest of a the detection of several
single-trial brain-evoked responses is discussed in the last
section.

II. EXPERIMENTAL PROTOCOL

Fifteen participants (average age 39.5, 9 male) volunteered
for the current study. Participants provided written informed
consent, reported normal or corrected-to-normal vision and
reported no history of neurological problems. Fourteen of the
fifteen participants were right-handed.

Cognitive Technology Threat Warning System (CT2WS)
video clips were used in an RSVP paradigm where observers
made a manual button press when they detected a target
(person or vehicle) presented among distractors. Video clips
consisted of five consecutive images each 100ms in duration
(500ms total duration). If a target appeared in the video clip
it was present on each 100ms image. The distractor to target
frequency ratio was 90/10. Distractors were background
desert scenes without targets. Half the targets were people
and half were vehicles. Within the two target classes, half
were moving and half were stationary. RSVP sequences were
presented in two minute blocks after which time observers
were given a short break. Observers completed a total of 25
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blocks. For the behavioral response, the subjects pressed a
button on the keyboard with their dominant middle finger
when they detected either a person or a vehicle.

Fig. 1. RSVP task (left) and examples of targets (right).

Electrophysiological recordings were digitally sampled at
512Hz from 64 scalp electrodes arranged in a 10-10 montage
using a BioSemi Active Two system. External leads were
placed on the outer canthus and below the orbital fossa of
both eyes to record EOG.

III. METHODS

A. Signal processing

A set of features were extracted from the EEG signal
to determine if an ERP corresponding to a particular class
was detected or not. The goal was to find a set of features
that enhanced the discrimination between two types of brain
evoked responses. The EEG signal was first bandpassed
filtered (Butterworth filter of order 4) with cutoff frequencies
at 1 and 10.66Hz. The signal was downsampled by a factor
of 16 to obtain a signal at 32Hz. For the following steps, we
considered the observed signal over 612ms after the start of
a visual stimulus (20 sampling points).

The next step consisted of enhancing the relevant signal
by using spatial filters. Let us denote by U ∈ RNs×Nf , the
spatial filters, where Ns is the total number of sensors and
Nf is the number of spatial filters. The signal after spatial
filtering is defined by Xfilt = XU where X ∈ RNt×Ns is
the recorded signal, Nt is the number of sampling points. We
consider the xDAWN method for spatial filtering [8]. It has
been successfully applied in P300 based BCI and in RSVP
tasks [9], [10]. An algebraic model of the enhanced signals
XU is composed of three terms: the ERP responses on a
target class (D1A1), a response common to all stimuli, i.e. all
targets and non-targets confound (D2A2) and the residual
noise (H), which are filtered spatially with U .

XU = (D1A1 +D2A2 +H)U. (1)

where D1 and D2 are two real Toeplitz matrices of size
Nt ×N1 and Nt ×N2, respectively. D1 has its first column
elements set to zero except for those that correspond to a
target onset, which are represented with a value equal to
one. For D2, its first column elements are set to zero except
for those that correspond to stimuli onset. N1 and N2 are
the number of sampling points representing the target and
superimposed evoked potentials, respectively. H is a real
matrix of size Nt ×Ns. The spatial filters U maximize the

signal to signal plus noise ratio (SSNR):

SSNR(U) = argmax U

Tr(UT ÂT1D
T
1 D1Â1U)

Tr(UTXTXU)
(2)

where Â1 corresponds to the least mean square estimation
of A1 :

Â =

[
Â1

Â2

]
= ([D1;D2]T [D1;D2])−1[D1;D2]TX(3)

where [D1;D2] is a matrix of size Nt× (N1 +N2) obtained
by concatenation of D1 and D2. Spatial filters are obtained
through the Rayleigh quotient by maximizing the SSNR [8].
During the experiments, four spatial filters (Nf = 4) were
used. The input vector for the classifier was obtained by the
concatenation of the Nf time-course signals across spatial
filters. The Bayesian linear discriminant analysis (BLDA)
was used as a binary classifier [11], [12].

B. Evaluation methods

The Receiver Operating Characteristic (ROC) analysis
technique has been applied to classification problems with
two classes, e.g. for target detection with only one target [13].
Area Under the ROC Curve (AUC) has become a standard
for evaluating the performance of binary classifiers. The
ROC analysis includes several advantages, including the
ability to determine classification accuracy based on the prior
probabilities of classes. Given an application and a classifier,
setting decision thresholds should be set accordingly to the
problem, e.g. errors should be the same for every class, or a
particular class should require no error. The choice of optimal
thresholds can be critical for military or clinical applications
where the reliability shall be optimized, i.e. the cost of
some errors may have dramatic implications. Therefore, it
is important to use a method for determining the thresholds
that minimize the overall risk of an application. While this is
typically done by taking into account the multiclass confu-
sion matrix, because it introduces computational complexity
when there are a high number of classes [14], [15], here we
keep the AUC concept and extend it to the volume under
the ROC hyper-surface (VUS). In this study we consider a
3-class problem by estimating the VUS (EVUS) by using
three classifiers that adopt a one vs all strategy [16].

The operating point in the VUS is varied by changing the
posterior output of the results by the vector Φ = [φ1, φ2, φ3],
which corresponds to the classifier thresholds. φi > 0,
i = 1, 2, 3. The confusion matrices obtained from all com-
binations of Φ provide all the operating points in VUS. For
the estimation of EVUS, we consider Nφ = 20 thresholds in
each class. Hence, we obtain a hyper-polyhedron with N3

φ

vertices. The EVUS described by this hyper-polyhedron is
then estimated by using the optimized QHull algorithm [17].
It is worth mentioning that for a problem with three classes,
the EVUS for a random classifier is 0.166. In the next
section, the EVUS for three classes is represented by a
triangular surface plot. The class MTH, MTNH and NMTH
denote the ERP responses associated to the presentation of
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MTH MTNH NMTH
MTH 109.78± 3.92 4.20± 2.95 14.09± 1.99

MTNH 15.71± 5.96 51.49± 20.14 15.49± 5.84
NMTH 15.53± 2.77 4.49± 2.24 101.40± 8.46

TABLE I
AVERAGED CONFUSION MATRIX

a moving target human, a moving target non-human, and a
non-moving target human, respectively.

IV. RESULTS

In the present section, we first show the ERP waveforms
for each stimulus, then the results of the binary classifiers and
the multiclass classification. Figure 2 depicts the grandaver-
aged ERP waveforms for each stimulus class plotted with
a baseline correction of -200-0 ms on the electrodes FZ ,
CZ , PZ , OZ , P7 and P8. These plots were created for each
stimulus class and low-pass filtered at 30hz. Continuous,
artifact free data were timelocked to stimulus onset and
epoched from -200ms to 1000 ms. Only targets followed
by a response within 200-1000ms or non-targets followed
by no response were included in the analysis.

Fig. 2. Grandaveraged ERP waveforms for each stimulus.

The binary classification of each class with a one vs all
approach was first evaluated. The AUC for these binary
classifications is presented in Fig. 3. The mean AUC for
the detection of a moving target human (MTH), a moving
target non-human (MTNH), and a non-moving target human
(NMTH) was 0.907, 0.855 and 0.914. The detection of MTH
is easier than MTNH (p < 0.05, t14 = 2.404). Detection of
NMTH was better than both MTNH (p < 0.05, t14 = 2.589)
and MTH (p < 0.05, t14 = 2.589). These results suggest that
it is easier to detect stationary human targets.

The confusion matrix Γ represents the main analysis for
the performance of the multiclass classification. The diagonal
elements of Γ represent the performance of each class, the
other elements of Γ represent the different confusion errors
between classes. The element Γ(i, j) represents the number
of evoked responses of class i that were detected as the class
j. Table I presents the confusion matrix for the three classes.

Figure 4 presents the EVUS for each subject. The mean
EVUS across subjects is 0.878 with a standard error of
0.0069.

Fig. 4. EVUS for each subject. The error bars correspond to the standard
error across sessions for each subject, and across subjects for the mean.

An example of a ROC surface corresponding to subject
1 is depicted in Figure 5. The curves represented on the
sides of the cube represents the ROC curves associated to the
pairwise analysis of the different classes, i.e. (MTH,MTNH),
(MTNH,NMTH), and (MTH,NMTH).

Fig. 5. Example of a ROC surface representing the performance of subject
1. (EVUS=0.9507)
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Fig. 3. AUC for each subject. The error bars correspond to the standard error across sessions for each subject, and across subjects for the mean.

V. DISCUSSION AND CONCLUSION

In the ERP literature, it is well known that the target type
can influence the different ERP components of the brain-
evoked response. Those differences have yet to be fully
exploited in the BCI field. For current ERP based BCI, the
typical strategy relies on the detection of the presence of a
brain response and not its type. This latter strategy does not
fully explore the features of the different ERP components,
e.g. the amplitude, latency and spatial distribution. Indeed,
its main goal is to determine differences between the ERP
waveforms evoked by the presentation of a stimulus corre-
sponding to a target and one corresponding to a non-target.
In this case, the problem corresponds mainly to the detection
of the presence of a N200 and/or a P300 waveform in the
signal. While this binary classification problem for single-
trial remains difficult, we have shown that it is possible to
successfully classify three different evoked brain responses
using single-trial detection. This study has highlighted that it
is possible to go beyond the level of presence/absence of an
ERP component by considering differences between ERPs at
the single-trial level.

These promising results could allow improving the
throughput of target detection systems based on the de-
tection of neural responses. In applications where potential
targets can be presented in different ways like moving or
stationary, it is important to categorize or rank the target
type automatically. Indeed, target detection in natural images
obtained from photos in real environments can contain many
distractors that may look close to a target. Further works will
deal with online multiclass classification.
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