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Abstract² The N200 speller is a non-flashing visual 

brain-computer interface (BCI) using motion-onset visual 

evoked potentials (mVEPs). Previous N200 speller was 

implemented at the scalp EEG level. Compared to scalp EEG, 

electrocorticography (ECoG) provides a broader frequency 

band that could be utilized in BCI. In this study, we investigated 

whether the high gamma brain activities recorded from human 

intracranial electrodes can enhance the performance of the 

subdural speller. The ERP and high gamma responses of one 

most task-related subdural electrode were used together for BCI 

classification and showed that high gamma responses did 

enhance the performance for the subdural visual motion speller 

resulted in an average increase of over 8% (p<0.05, paired 

t-test).  

I. INTRODUCTION 

The N200 speller is a recently proposed brain-computer 
interface (BCI) system [1-2]. Similar to the classical P300 

speller [3- 4], the N200 speller consists of a 6u6 character 
matrix. In contrast to the visual flashes used in the P300 
speller, brief visual motions are presented at the locations of 
these characters in a column / row manner. The column and 
row associated with the overtly attended (i.e. eye gaze) visual 
motion stimulus elicits a more negative peak (N200) around 
200 ms after stimulus onset, constituting the basis of BCI 
classification. The N200 speller was named after N200, which 
is the most prominent component of motion-onset visual 
evoked potentials (mVEPs) [5]. The N200 speller has been 
demonstrated to achieve a comparable performance with that 
of the P300-speller [2]. Along with the lower inter- and 
intra-subject variability of  mVEPs [6] and less user fatigue 
for long-time use brought by the nature of the non-flash visual 
stimuli, the mVEP based BCI has been proposed to be a 
promising candidate of practical  human-computer interface 
applications [7]. 

While most of currently reported BCIs are using the 
non-invasive electroencephalographic (EEG) recordings from 
the human scalp [8-11], increasing interests have been drawn 
toward electrocorticography (ECoG) [12]. ECoGs are directly 
recorded from the surface of the brain, which is capable of 
capture brain activities of a broader frequency band, 
compared to the non-invasive EEGs. Specifically, the brain 
activities in the gamma band (i.e. 40-200 Hz) have been 
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proposed to be highly correlated with the execution of a 
variety of cognitive tasks such as motor intention, speech 
production, attention etc. [12-14]. For BCI applications, 
classifications of different motor/language intentions and 
visual attention statuses have been achieved using ECoGs 
[15-17]. 

The N200 speller is likely to benefit from the broad 
frequency distribution of ECoGs as well. It has recently been 
shown that visual motion stimuli induces a significant increase 
of high gamma band activities in ECoG electrodes that 
covered the fMRI-defined hMT+ [18], which is a special area 
for processing visual motion. The hMT+ high gamma activity 
had a different time course and power change characteristic 
compared to the event-related potentials (ERP) recorded in 
parallel, indicating that the high gamma responses might 
provide independent information. However, it is still unclear 
whether the visual motion related high gamma activity is 
subject to human attentional modulation, which is critical for 
BCI controls. 

In this study, we investigated whether the high gamma 
brain activity recorded from human subdural electrodes over 
visual motion area can enhance the performance of the N200 
speller. ECoG data were recorded from two epilepsy patients 
with ECoG electrodes placed over the hMT+ regions for the 
purpose of identifying the epileptic zone. The patients 
participated in an offline N200 speller experiment. One 
subdural electrode with most prominent ERP and high gamma 
responses was selected for BCI classification. The 
contribution of the high gamma responses was evaluated in 
terms of BCI classification accuracy. 

II. METHODS 

A. Patients 

The experiment was conducted with two patients (see 
Table I for additional information) who suffered from 
intractable epilepsy and underwent temporary placement of 
intracranial ECoG electrode arrays to localize seizure foci 
prior to surgical resection. The patients gave informed consent 
prior to the implantation of electrodes and the study was 
approved by the Ethics Committee of the affiliated Yuquan 
Hospital, Tsinghua University. 

TABLE I.  PATIENT INFORMATION 

Patient Age Sex Electrode Grid Placement 

A 12 Male Right TL, PL and OL 

B 24 Male Right TL and PL 

TL, temporal lobe; PL, parietal lobe; OL, occipital lobe.  
 

The patients had a 32- or 64-electrode grid (4 mm 
electrode diameter and 1 cm inter-electrode distance) placed 
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over the parietal-temporal-occipital region. Grid placement 
and duration of ECoG monitoring were entirely based on the 
clinical requirements, without any consideration of this study. 

B. Paradigm 

The subject sat about 60 cm in front of a 19-inch LCD 

monitor with a 60 Hz refresh rate and 1280u1024 resolution. 
A demonstration of the N200 speller interface [2] is shown in 

Fig. 1, which is a 6u6 screen virtual keyboard with embedded 
visual motion stimuli. In each virtual button, a vertical bar 
appeared (motion-onset) at the right border of a vacant 
rectangle and moved leftward at the velocity of 2.00°/s before 
it disappeared (motion offset), forming a brief motion 
stimulus. The entire process of onset, motion and offset took 
150 ms. The stimulus onset asynchrony (SOA) between two 
motion stimuli was 200 ms. The motion stimuli in the virtual 
buttons occur in a random order by row/column, with random 
color (red, green, blue, brown, yellow and cyan). Presentation 
of the stimuli was programmed in Matlab (The Mathworks, 
USA) using Psychophysics Toolbox 3.0 extensions [19-20]. 

 

 

Figure 1.  The N200 speller interface. 

C. Procedure 

The experiment was carried out in an offline manner. The 
visual stimuli were presented in an epoch-trial-block way. A 
stimulus epoch was defined as a motion stimulus of one row or 
one column. One trial of stimulus presentation consisted of 12 
stimuli epochs in a random order, corresponding to the six 
rows and six columns respectively. A block contained 10 or 
15 continuously presented trials with the same virtual button 
DV�WKH�µWDUJHW¶�IRU�RYHUW�DWWHQWLRQ��'HSHQGLQJ�RQ�WKH�VXEMHFWV¶�
attention task, the stimulus epochs were categorized into 
target epochs where the corresponding stimuli epoch included 
the virtual buWWRQ� DV� WKH� VXEMHFWV¶� DWWHQWLRQ� IRFXV�� DQG�
non-target epochs where not including the attended virtual 
button. While watching the target, the subject was also 
instructed to mentally count the number of times the moving 
bar appeared in the attended button. Patient A participated in 6 
blocks (15 trials/block). Patient B participated in 6 blocks (10 
trials/block). The amount of data obtained from each patient 
varied due to their physical state and willingness. 

D. ECoG Recordings and Electrode Localization 

ECoG was recorded from implanted electrodes using the 
g.USBamp amplifier/digitizer system (g.tec, Graz, Austria). 

The amplifier sampled the signal at 1200 Hz using a high-pass 
filter with a 0.1 Hz cutoff frequency and a notch filter at 50 Hz 
to remove power noise. Four inactive epidural electrodes 
facing the skull were served as ground and reference. 

Before the implantation surgery, the patients¶ MRI 
imaging was acquired with a 3T Philips scanner, covering the 
whole brain. After the placement of the subdural grid, the 3D 
head CT image was obtained by a Siemens SOMATOM 
Sensation 64 CT to verify its location. The three-dimensional 
cortex segmentation in MRI head model was implemented 
with BrainVoyager software (http://www.brainvoyager.com/). 
Afterwards, the post-operative CT was co-registered with the 
pre-operative MRI, using 3D Slicer (http://www.slicer.org/). 
After co-registration, the locations of implanted electrodes 
were marked on the patients¶ individual 3D cortex. 

E. Data Analysis 

The visual motion onset elicited brain responses in both 
the low frequency band (i.e. ERP) and the high frequency 
band (i.e. high gamma) were extracted separately for BCI 
classifications. To extract the ERPs, the ECoG data were first 
digitally filtered using a bidirectional linear filter (pass band 
1-20 Hz). Single-epoch data were derived in association with 
each stimulus, beginning 200 ms prior to the motion-onset and 
lasting for 1000ms. All epochs were baseline corrected with 
respect to the mean voltage over the 200 ms preceding the 
motion stimulus onset. To explore possible high frequency 
responses, the ECoG data were band-pass filtered to 60-140 
Hz and the time-varying high gamma envelops were extracted 
by Hilbert transform. The high gamma envelops were then 
baseline corrected following the same procedure as done for 
the ERP feature. 

Before BCI classifications, we searched for single 
µoptimal¶ subdural electrode for both the ERP and high 
gamma features. The optimal electrode was defined as the 
electrode with maximal correlated activity with the attention 
task. Here the task correlation was evaluated by calculating 
the square of the Pearson correlation (r ²) between the target 
and non-target responses. The optimal electrode was chosen 
(i.e. showing the largest r ²) separately for ERP and high 
gamma features. The ERP responses between 50 ms and 350 
ms after stimulus onset were then downsampled to 30 Hz, 
forming a 10-dimension feature vector. Likewise, the high 
gamma feature was consisted of a 15-dimension feature vector, 
which was the downsampled (also 30 Hz) high gamma  power 
envelop between 0 ms and 500 ms. 

The classification was carried out in two steps. First, in 
order to assess the BCI contribution of both ERP and high 
gamma feature separately, two support vector machine (SVM) 
classifiers were constructed for discriminating target 
responses from non-target responses, using either ERP or high 
gamma features. The output of these SVM classifiers were 
further translated into p-values, describing the probability of 
one particular epoch to be a target epoch [21]. Second, a 
2-dimnesion feature vector was formed using the probability 
outputs of the two SVM classifiers and submitted to a Fisher 
linear discriminate analysis to obtain a classification accuracy 
with combined contributions of both the ERP and high gamma 
features. 
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The classification algorithm was implemented in Matlab 
with LibSVM toolbox [21]. The first 3 blocks of data were 
used for training the classifier and the rest 3 blocks were used 
for validation. Only classification accuracies on the rest 3 
blocks were reported. 

III. RESULT 

A. Intracranial mVEPs and High Gamma Oscillations 

The overt attention led to a negative ERP peak (Fig. 2, 
left), with a latency of ~180-240 ms post-stimulus, similar to 
the scalp N200 responses [2]. The high gamma (60-140 Hz) 
power envelop increase occurred around ~150 ms after 
motion onset and lasted ~200 ms (Fig. 2, right). The time 
periods with a significant difference (paired-sample T-test, p 
< 0.005) between the responses of target and non-target 
stimuli were highlighted in grey. 

 

Figure 2.  Averaged temporal patterns of ERP and high gamma power 

envelop of Patient B 

B. Single Electrode Selection 

Fig. 3 showed the r
2
 results for both ERP and high gamma 

features, mapped on the patient¶V� RZQ� FRUWH[ surface. The 
subdural electrode with the largest r

2 
was then chosen as the 

µoptimal electrode¶ for BCI classifications. For both the two 
patients, the ERP and high gamma power envelop showed 
maximal discriminability between target and non-target 
responses at the same electrode (marked by the arrows). 

 

Figure 3.  r2 mapping of ERP and high gamma 

C. BCI Classification 

The classification accuracies using only ERP features and 
combined features (i.e. ERP & high gamma) were presented in 
Fig. 4. Following the traditional ERP BCI approaches, the 
classification accuracies were calculated as the function of 
number of epochs being temporally averaged. For both these 
two patients, the classification accuracies were increased 
when introducing the high gamma features. On average, a 
~8% (p<0.05, paired t-test) increase was observed. 

 

Figure 4.  BCI classification accuracies 

IV. DISCUSSIONS AND CONCLUSIONS 

In this paper, the possibility of implementing an ECoG 
based N200 speller was assessed. We observed both increases 
of the high gamma (60-140 Hz) power after the overtly 
attended visual motion stimuli, and ERPs that was similar to 
the scalp mVEPs. Interestingly, the ERP and high gamma 
features had similar spatial distribution, thus the same single 
subdural electrode was used for BCI classification. 
Comparing with traditional EEG-based classification method 
using only ERPs features, classification with high gamma 
feature showed an average increase of over 8% (p<0.05, 
paired t-test). 

The frequency range and time course of the high gamma 
responses were similar to characteristics reported in [18]. Also, 
the observed intracranial ERPs were also consistent with 
previous ECoG studies on visual motion processing [22]. 
However, here we further extended their findings, showing 
that these responses can be modulated by overt attention, thus 
allowing BCI controls. 

To investigate whether high gamma responses had 
independent contribution for BCI classification, we further 
analyzed the independence of ERP and high gamma features.      
Fig. 5 shows that the two features contributed somehow 
independently, as the optimal classification boundary was 
likely to be the diagonal of the two-dimension feature space. 
Considering the different time course of the ERP and high 
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gamma feature, they might reflect different brain mechanisms 
for processing the attended visual motion stimuli. 

EEG studies on visual motion processing has already 
suggested that the recorded mVEPs (especially the N200 
component) might originate from hMT+ [5], which was a 
relatively small brain region. As here we found that both ERP 
and high gamma responses showed high task specificities in a 
very localized area (Fig. 3), the recorded responses were 
likely to be from the hMT+ as well. One remaining issue is 
how to determine the spatial location of the single subdural 
electrode for BCI classification. As high gamma activity has 
been reported to be spatially correlated with fMRI BOLD 
responses [23-24], it may be possible to determine the 
location of the single electrode for BCI application using 
non-invasive imaging technology, prior to the implantation 
surgery. Nevertheless, the highly localized brain responses 
shed lights on the practicability of the ECoG based N200 
speller: only a small brain region and a single subdural 
electrode may provide sufficient information for operating an 
N200 speller, therefore a minimally invasive BCI can 
potentially be achieved. 

 

Figure 5.  Target and non-target samples marked by the amplitudes of ERP 

(N200) and high gamma power envelop 
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