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Abstract—To detect the imagined limb movement from EEG 

for the use in BCI, the increase (ERS) and decrease (ERD) of the 

band power of the EEG originated from the sensorimotor cortex 

are commonly used. A spatial filter using neighboring channels 

is generally applied to the measured EEG for detecting such 

brain activity related to the motor imagery. However, the 

configuration and location of the spatial filter have been selected 

by the empirical method on trial-and-error basis. In this study, 

we recorded the EEG during motor imagery of left hand, right 

hand and feet from five subjects, and the ICA (independent 

component analysis) was applied to discover the spatial filters 

for extracting event-related EEG components of the motor 

imagery. It was suggested that the application of ICA might 

offer the experimenters appropriate local spatial filters, or at 

least, the “initial guess” for designing or selecting custom local 

spatial filters. 

I. INTRODUCTION 

To realize the EEG-based BCI (brain-computer interface) 
using motor imagery, the increase and decrease of the EEG 
band power (event-related synchronization/desynchronization, 
ERS/ERD) at mu, beta or gamma frequency range are 
extracted and detected to specify the limb of which the user 
imagined the movement [1]. 

These EEG components are originated from the 
sensorimotor cortex, and can be extracted by applying the 
spatial filter, which is defined as the weighted sum of the EEG 
data measured simultaneously from multiple electrode sites.  

The spatial filter with sparse and localized weight 
distribution (local spatial filter), e.g. bipolar montage and the 
Laplacian filter, is useful to extract the localized cortical EEG 
activities. As these local filters use only a few or some 
electrodes, the application of these filters can reduce the 
number of EEG channels for detecting motor imagery. 
However, the local spatial filter should be optimized by the 
large-scale numerical analysis to test all the places and 
combinations of the electrodes. 

In this study, a method to optimize the location and the 
configuration (distribution of the weight values) of the local 
spatial filter for detecting EEG activities during motor 
imagery in a semi-automatic manner was proposed. It was 
shown that the local spatial filters to extract EEG components 
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related to motor imagery could be generated by applying ICA 
(independent component analysis) to the measured EEG data. 

II. SPATIAL FILTERS FOR BCI 

The spatial filter has been used to reduce artifacts and 
far-field potentials and to extract specific brain activations 
from measured EEG data. The common spatial pattern (CSP) 
filter is one of the efficient spatial filters. The CSP filter is 
designed so as to maximize the classification accuracy of the 
multidimensional data [2, 3, 4, 5]. In general, the weights of 
the CSP filter are widely distributed in space. 

The spatial filter with sparse and localized weight 
distribution (local spatial filter) has been generally used to 
extract cortical near-field potentials. The Laplacian filter and 
bipolar montage are commonly used as local spatial filters [6, 
7, 8]. In case of the practical use of BCI, the electrodes used in 
the spatial filter should be as less as possible. The local spatial 
filter is suitable for such purposes. 

Before applying such local spatial filters, the proper 
selection of the local spatial filter should be done for 
extracting the target cortical activities from EEG. The 
selection could be determined by the location and the 
configuration (distribution of weight values in space).  

McFarland et. al compared the performances of spatial 
filters to extract motor-related mu and beta EEG oscillations. 
It was shown that the large Laplacian filter (gap between the 
center electrode and surrounding electrodes: 6 cm) and the 
CAR (common average reference) filter marked better results 
than a small Laplacian filter (gap: 3 cm) or a standard 
ear-reference (monopolar) [6]. The bipolar montage 
configuration is also known to be effective and is widely used 
to extract motor-related brain responses [7, 8]. 

When using the local spatial filters on the practical BCI, all 
the possible locations of the local spatial filter should be tested, 
and the best location should be chosen by the large-scale 
numerical analysis.  

Moreover, such local spatial filters are pre-defined to 
obtain the derivatives or partial derivatives at the center point 
from the measured EEG voltages, and the configurations are 
symmetric or isotropic in space. However the source area of 
the target EEG activity may have a distribution in space and 
the source distribution may be anisotropic or atypical. That 
means that configurations of such pre-defined local spatial 
filters might not be optimal to extract cortical EEG activities.  

III. METHODS 

In this study, the ICA was tested to generate and discover 
the appropriate configuration and the proper location of the 
local spatial filter to extract motor-related cortical EEG. 
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Five subjects with normal motor abilities were requested 
to imagine the movements of their left hand, right hand or feet 
for five seconds.  

The time chart of a trial in the experiment is shown in 
Figure 1. The instructions to subjects (Figure 1, upper) were 
displayed on the LCD display in front of the subjects. Three 
seconds after showing the green fixation cross, a red arrow 
was presented as a cue for 1.25 seconds.  During the period 
between the onset of the cue (t = 0 s) and the offset of the 
fixation cross (t = 5 s), subjects were instructed to imagine the 
movement of the subjects’ own limb, which was instructed by 
the direction of the red arrow (left: left hand, right: right hand, 
down: both feet). On each trial, the limb to be imagined was 
changed in a random order. For each subject, 6 sessions each 
of which consisted of 30 trials were conducted (totally 180 
trials, 60 trials/limb).  

EEG during motor imagery was recorded from Ag-AgCl 
electrodes placed over 32 positions (see e.g. Figure 2 (a), left) 
at the sampling frequency of 2 kHz. The reference and the 
ground electrodes were placed on right and left earlobe, 
respectively.  

After resampling the recorded EEG data to 100 Hz, the 
following three kinds of local spatial filters were applied and 
the performances to extract the EEG activities related to the 
motor imagery were compared. 

(1) Bipolar filter: Bipolar re-reference was applied. Voltage 
difference of the pairs of nearest neighboring anterior 
and posterior electrodes was calculated, e.g. Cz – FCz. 

(2) Laplacian spatial filter: A 2-D isotropic measure of the 
second spatial derivative of the voltage distribution. It is 
approximated using the center and the surrounding 
electrodes by the following equation. 
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where   and   
    are the measured and the Laplacian 

filtered signal at i th channel,    is a set of the first 
nearest neighbor electrodes of i th channel, and N is the 
number of the first nearest neighbor electrodes (N = 4). 

(3) ICA spatial filter (local filter generated by ICA): ICA 
was applied to obtain the unmixing matrix and the 
independent EEG components. The FastICA algorithm 
[9] was used in this study. Each row of the unmixing 
matrix is defined as the distribution of the weight value 
(configuration) of the ICA filter. The topographic 

distributions of the weights of the ICA filters were 
visually inspected, and the independent components 
obtained by the ICA filters were analyzed. The ICA 
filters which had the spatially-localized distribution near 
the sensorimotor cortex and were relevant to motor 
imagery were selected and used for further analysis. 

Time-frequency ERS/ERD maps of the EEG after 
applying one of the local spatial filters were computed. The 
ERS/ERD was calculated by the following equation [1]. 
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The relationship between the EEG responses extracted by 
the local spatial filters, and the location and the configuration 
(distribution of weight values) of the local spatial filter, were 
evaluated.   

IV. RESULTS AND DISCUSSION 

A. Local Spatial Filter Generated by ICA 

It was shown that the local spatial filters which can extract 
the EEG components related to motor imagery were generated 
by applying ICA. 

One of the examples of the analysis to apply two types of 
the local spatial filters to the same data is shown in Figure 2.  
Figures 2 (a) and 2 (b) show the results of a bipolar filter, and 
the ICA filter generated from the same data, respectively. Both 
spatial filters extracted the increase (ERS) of the higher 
beta-band oscillation (24 – 30 Hz) during feet motor imagery 
(Figures 2 (a) and 2 (b), center and right). From the spatial 
configuration of the ICA filter (Figure 2 (b), left), one location 
with positive weight (Cz) and one with negative weight (FCz) 
could be found. This configuration is similar to a bipolar filter 
at the vertex area, which is commonly used for EEG-based 
BCI to detect feet motor imagery [8].  

Five surrounding locations with negative weights (C1, C2, 
CP1, CPz and CP2) were also observed from this ICA filter. 
The configuration of the spatial filter that consists of Cz and 
these five surrounding electrodes is similar to the Laplacian 
filter. By comparing the performance of the ICA filter with the 
bipolar filter, it was found that the generated ICA filter is more 
suitable to extract ERS activities during feet motor imagery. 
These observations suggest the configuration of the ICA filter 
is like the combination of the bipolar and the Laplacian filters.  

It was also found that the time courses of the beta-band 
EEG power are different between these two spatial filters 
(Figures 2 (a) and 2(b), center and right). This might suggest 
that the EEG components extracted by the two filters are 
different, even though the centers of these two filters are 
located at the vertex area.  

It was shown that, instead of analyzing the data to specify 
the location and type (configuration) of the spatial filters by 
the empirical method on trial-and-error basis, ICA could be 
used to generate the local spatial filter to extract the oscillatory 
EEG activities which were related to the motor imagery. 
Moreover, though all the types or the spatial filter should have 
been tested on the previous method, the application of ICA 
could also discover the appropriate configuration of the spatial 
filter (distribution of weight value in space), even if it had an 
anisotropic or atypical configuration. 

 

Figure 1.    Timing of a trial in the experiment. 
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B. Classification Accuracy of the Filtered EEG Data 

The performances of the spatial filters were evaluated by 
the pattern classification accuracy.  

The feature vector at time t was calculated as follows. The 
power spectrum value at the frequency of 5, 6, … , 40 Hz (36 
dimensions) was obtained by applying FFT to the data 

extracted by a 1-second rectangular time window (t - 0.5 ~ t  
0.5 [s]) after filtering by one of the local spatial filters. For 
each type of the three kinds of local spatial filters, power 
spectrum values calculated from the selected three locations 
(left hand, right hand and foot area on the sensorimotor cortex) 
were concatenated to one vector (         dimensions) 
and it was used as a feature vector for pattern classification. 
The time window was shifted for every 100 ms to obtain the 
feature vectors at each time period.  

As the bipolar filters, Cz-FCz, C3-FC3 and C4-FC4 were 
selected, and the electrodes located at Cz, C3 and C4 were 
selected as the center electrodes of the Laplacian filters (see 
Figure 3 (a) and (b), respectively). As the ICA filter, three 
filters with local weight distribution which was located near 
Cz, C3 and C4, were visually inspected and selected. 

The pattern classification to discriminate the class Rest 
and each of the Task classes (left hand, right hand and feet) 
was tested at each time. All the epoch data (totally 180 trials) 
were used for both sample and test data. The feature vectors at 

time -1.9 ~ - s and 1.1 ~ 4.0 s were used as the sample data 
on class Rest and Task, respectively. All the feature vectors 
taken from the same subject at all the time period were used 
for test data. The Mahalanobis distances between a test data 
and the sample data of Rest and three Task classes were 
calculated, and the test data was classified to the nearest class.  

Figure 3 shows the result of the pattern classifications 
using the bipolar, Laplacian and ICA filters on one of the 
subjects. The examples of the ICA filters generated from the 
EEG data are shown in Figure 3 (c). The peak weights were 
located at the corresponding motor area (areas around C4, Cz, 
C3 on left hand, feet, right hand motor imagery, respectively). 
The configurations for left and right hand motor imagery were 
almost isotropic and were similar to the Laplacian spatial 
filter. But the ICA filter for feet motor imagery was 
anisotropic, and unlike the Laplacian filter, more than one 
electrode location had peak weight values. 

The classification accuracies for each imagery task (left 
hand, right hand and feet) of a subject are shown in Figure 3 
(d). It was shown that the classification accuracy increased 
from about 2 seconds after the onset of the cue. The maximum 
accuracies of pattern classification were more than 0.9 on feet 
movement imagery task, and about 0.8 on left and right hand 
movement imagery task. From this subject, the ipsilateral as 
well as the contralateral activation of the motor-related mu 
oscillation was observed. The low accuracy of pattern 
classification on left and right hand movement imagery might 
be due to the similarity of the spatial distributions of the 
frequency components of EEG during motor imagery. 

The accuracy before starting motor imagery task (i.e. false 
positive rate) was high on feet movement imagery task. This 
means it was relatively difficult to distinguish the feet 
movement imagery class and the rest state. The false positive 
rates of Laplacian and ICA filters were lower than that of 
bipolar filter. During motor imagery (0 ~ 5 s), the accuracies 
of pattern classification were almost the same for the three 
local spatial filters, but the result by bipolar filter was a little 
bit lower than those by Laplacian and ICA filers. 

 

Figure 2.    Examples of local spatial filters and the properties of EEG components extracted from the same data. 
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V. DISCUSSION 

It was shown that the local spatial filters could be 
generated by applying ICA to the measured EEG data. These 
ICA filters were located near the left hand, right hand and feet 
areas in the motor cortex. It was also shown that the spatial 
distributions of the generated ICA filters with local 
distributions were similar to the bipolar filter or Laplacian 
filters. And the anisotropic or atypical distributions of the ICA 
filters were also observed. Moreover, the performances of 
these ICA filters were comparable to those of pre-defined 
Laplacian filters, and were better than those of bipolar filters. 

The purpose to apply ICA to the measured EEG data was 
to estimate the appropriate location and scale (number of 
electrodes needed) of the local spatial filters to detect EEG 
components related to motor imagery. From these results, it 
was suggested that the application of ICA might offer the 
experimenters appropriate local spatial filters, or at least, the 
“initial guess” for designing or selecting custom local spatial 
filters. The application of ICA could avoid the empirical 
method on trial-and-error basis and the large-scale data 
analysis to determine the local spatial filters for each 
individual subject on the BCI system based on motor imagery. 

In this study, the unmixing matrix of ICA was used to 
determine the abstract spatial distribution of the ICA filter. 
The pruning of the electrode locations with small weight 
values should be investigated to discover the closely optimal 
configuration of the local spatial filters. 

VI. CONCLUSION 

For improving the EEG-based BCI to detect motor 

imagery, the application of ICA to EEG data to extract 

motor-related oscillatory EEG activities was proposed and 

tested. The detailed investigation of the application of ICA to 

obtain the optimal location and configuration of the local 

spatial filter was left for further study. 
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Figure 3.    Selected local spatial filters (a)-(c) and the classification accuracies after filtering.  

Green, blue and red lines denoted classification accuracies with bipolar, Laplacian and ICA filters, respectively. 
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