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sed for classification remains a key issue in the study of 

I. INTRODUCTION 

Cursor m ng one-dimensional 
and t

 

u
Brain-Computer Interface. Several studies have shown that a 
reduced number of channels can achieve the optimal 
classification accuracy in the offline analysis of motor imagery 
paradigm, which does not have real-time feedback as in the 
online control. However, for the cursor movement control 
paradigm, it remains unclear as to how many channels should 
be selected in order to achieve the optimal classification. In the 
present study, we gradually increased the number of channels, 
and adopted the time-frequency-spatial synthesized method for 
left and right motor imagery classification. We compared the 
effect of increasing channel number in two datasets, an 
imagery-based cursor movement control dataset and a motor 
imagery tasks dataset. Our results indicated that for the former 
dataset, the more channels we used, the higher the accuracy rate 
was achieved, which is in contrast to the finding in the latter 
dataset that optimal performance was obtained at a subset 
number of channels. When gradually increasing the number of 
channels from 2 to all in the analysis of cursor movement 
control dataset, the average training and testing accuracies from 
three subjects improved from 68.7% to 90.4% and 63.7% to 
87.7%, respectively. 

 

ovement control [1], includi
wo-dimensional control, is one of the most popular 

paradigms for motor imagery based brain-computer interface 
[2]. The ability to discriminate between left and right motor 
imageries is typically the key issue in such paradigms, and this 
has already attracted the attention of many researchers. One 
crucial factor that affects the discrimination accuracy is the 
selection of EEG channels. Theoretically speaking, the more 
channels that are used, the more information we can extract 
and thus the higher accuracy rate can be achieved. However, 
recent studies have shown that there are an optimal number of 
channels used for the motor imagery tasks paradigm, after 
which classification accuracies decrease [3], [4]. This may be 
true because of over fitting or irrelevant channels. Since left- 
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paradigm and no feedback is given, its feature patterns are 
simple. However, few researchers have studied the question of 
how many channels should be used for cursor movement 
control paradigm, which is more complicated, including 
real-time control and feedback. 

In this study, we utilized a modified 
time-frequency-spatial synthesized approach [5] to perform an 
offline analysis on online-recorded cursor movement control 
dataset. Data of three subjects performing imagery-based 
cursor movement control were processed and analyzed. This 
study also investigated how classification accuracy is affected 
by algorithm parameters, such as the sliding window, training 
trial number, and the electrode montage. As a comparison, an 
offline analysis on the motor imagery tasks dataset was also 
conducted. 

II. METHODS 

A. Data Description 
Two sets of EEG data were us

 from the online one-dimensi
experiments, in which 
to move the cursor to hit the right/left target, by using right or 
left motor imagery [6]. The human study was approved by the 
Institutional Review Board of the University of Minnesota. 
EEG data were recorded from 64 electrodes distributed over 
the entire head (according to the international 10/20 system) 
with a 200Hz sampling rate. The system used here includes a 
NeuroScan amplifier and general-purpose BCI2000 [7]. The 
data of each subject processed in this study included 156 trials; 
78 for left and 78 for right. 

The other dataset is from the motor imagery tasks 
experiments, which were received from a data analysis 
competition during the 

ems (NIPS2001) [8]. In this paradigm, nine subjects were 
asked to start and end imagination of either left hand or right 
hand movement indicated by timing cues, which was shown 
on a computer screen. During each trial, no feedback was 
given. The scalp EEGs of nine subjects were recorded from 59 
channels (international 10/20 system) with a sampling rate of 
100Hz. For each subject, the total number of trials is 180; 90 
for left motor imagery and 90 for right motor imagery. 

B. Data Preprocessing 
Surface Laplacian Filter. For all of the raw EEG data from 

64 channels, we implemented the Surface Laplacian [9]
to each channel. 
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Where Vj is the target channel we care about, Sj is an index set 
of four surrounding channels. For the channels that had four 
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nei ls, we applied the
sho  For the channels that were located at the 
periphery, such as T7, FT8, etc., their surface Laplacians were 

and into 13 overlapping sub-bands with 

r control is a real-time 
edback, as subjects may imagine one 

ghboring channe  regular filtering, as 
wn in equation 1.

calculated by subtracting the mean of the 2 or 3 adjacent 
channels from them. 

       Bandpass Filtering and Feature Extraction. We focused 
on the frequency range from 5 to 30Hz because it spans over 
mu (8-12Hz) and beta (13-28Hz) rhythms, which play an 
important role in motor imagery [5-6,10,12-20]. We divided 
the entire frequency b
a constant-Q (also called the proportional band width). For 
each sub-band, a third order Butterworth band-pass filter was 
constructed to process the EEG. The envelope of each 
sub-band data was then extracted by performing the Hilbert 
transform. Extracted envelopes were treated as the leading 
feature because they carry information of the power 
modulation in frequency bands.    

C. Trial Means 
      Intra-Trial Means. For the one-dimensional cursor control 
paradigm, the length of trials varies from trial to trial, so it is 
difficult to calculate the mean value over multiple trials. 
However, one-dimensional curso
experiment with fe
certain hand movement to continually move the cursor to the 
goal. Thus, as motor imagery repeats, the envelope patterns at 
each channel and each frequency band will repeat over the 
entire single trial. Considering this, we believe we can extract 
a majority of the pattern information through a short time 
segment. In this study, a short time segment of 120 sampling 
points (i.e., 600 ms), which we call a sliding window, was 
used. Thus, the intra-trial mean will be 
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where , , ,i j m kt  is the k-th time segment in a trial, with 50% 
overlapping, and m, j, and i indicate the m-th trial’s j-th 
sub nnel. 

      Trial-to-trial Means. To eliminate the variance from 
 to s

-band of i-th cha

session ession, and to get generalized characteristic 
patterns, trial-to-trial means over the left/right training set 
were separately calculated after the calculation of intra-trial 
means. 
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Finally, we obtained the generalized characteristic patterns, 
Avg ght, which will b ng 
classification s

D. Classification by weighted frequency patterns 

Left and AvgRi e used in followi
ection. 

     We denote the characteristic patterns AvgLeft and AvgRight 
as { , }L RP P P= . Given an input feature pattern p, the 
correlation between p and P is calculated as 

                        ( ) ( )( , )
Tp p P PC p P

p p P P
− −

=
− ⋅ −

where p  and P  are the mean values of p  and , 

 the assignm

P
respectively. Thus we were able to get the classification result 
from ent function below 

               ( ) sgn[ ( , ) ( ,h p C p P C p, )]i j L RP= −       (5) 

i-th 
j-th frequency band. =1 indicates that 

o left

 frequency bands do 
lly contribute to accurate classification. Some 

frequency bands may play a determinant role, while others 
may cau

uen

, ( )i jh p  denotes the classification result from the 
channel’s 

 t
 ,i jh p  

pbelongs  the -hand imagery, and -1 indicates that  
belongs to the right-hand imagery. 

      However, the envelopes at different
not equa

se the wrong classification. Based on this, we 
introduced the weight for each freq cy band. The weight is 
determined by its classification accuracy from training sets, as 
the following 
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       (6) 

Where af  denotes classification accuracy of each sub-band, E 
is a threshold and m is the control parameter. In this study, we 
set E=0.6 and m=2. 

III. RESULTS 

y, we processed and analyzed two di ets 
of lassification accuracies change 
with the number of channels increasing. The first dataset was 

h [5] for analysis, with a minor change 
being made to ch as to cursor-control 
dat

(i.e. the same sliding window and electrode 

In this stud fferent s
data to investigate how c

recorded from one-dimensional cursor control experiments, 
and the other dataset from motor imagery tasks experiments. 
For both datasets, we adopted the time-frequency-spatial 
synthesized approac

 the classification approa
aset. Because the length of trials is not consistent, the 

correlation between pattern and test trials can not be directly 
calculated. Thus we introduced intra-trial mean concept as the 
time-domain information, which is slightly different with 
original time-frequency - spatial synthesized approach. For 
both sets of data, ten fold cross-validation was used to get the 
overall classification accuracies, without rejecting any trials 
from the datasets. 

A. One-dimensional cursor control paradigm results 
As described in section Ⅱ, we used 62 out of 64 channels, 

excluding channels M1 and M2. Each channel data was 
decomposed into 13 sub-bands, and the sliding window = 120 
sampling points (i.e., 600ms). Thus, the feature pattern of a 
single trial is a matrix of 62×13×120 dimension. We 
performed the classification algorithm under the same 
parameters setting 
montage).  

Fig. 1 shows the training and testing results from the 
one-dimensional cursor control experimental data. The results 
demonstrate that both mean training and testing accuracies 
from three subjects improved when the number of used 
channels gradually increased. With a small number of 
channels (less than 16), accuracies were sensitive to the                  (4) 
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number of channels, and improved quickly. With 32 or more 
channels, accuracies improved slowly.  
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F
igure 1. One-dimensional cursor control paradigm. Blue bars denote 
mean training accuracies over three subjects; red bars denote mean 
testing accuracies over three subjects.  

 

B. Motor imagery tasks paradigm results 
      For the motor imagery tasks paradigm, only a few studies 
pertaining to channel selection have been conducted, and such 

ification, especially 
creases. In this study, we applied the 

h [5] on the motor 

studies found that a reduced number of channels can achieve 
optimal classification using the selection methods REF [3] and 
PSO [11], etc. However, few of these studies have analyzed 
how the number of channels affects class
as it in
time-frequency-spatial synthesized approac
imagery tasks dataset to classify left and right motor imagery. 
The results of this dataset also served as a comparison with the 
results of cursor control dataset. Results are shown in Fig. 2.   

 

2 4 8 16 32 59
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

ur
ac

y

 
Mean Training Accuracy
Mean Testing Accuracy

Channel Number

C
la

ss
ifi

ca
tio

n 
A

cc

 

 
Figure 2. Motor imagery tasks paradigm. Blue bars denote mean 
training accuracies over nine subjects; red bars denote mean testing 
accuracies over nine subjects.  

 

 The results shown in Fig. 2 are very different from the 
one-dimensional cursor control paradigm. At the beginning, 
both training and testing accuracies improved with an 
increased number of used channels. However, after 16 
channels, the testing accuracy significantly decreased, from 
81.3% to 68.9%. Meanwhile, the training accuracy remained 
stable.  

 Separately analyzing the results of each subject, we found 
that: 1) Both training and testing classification accuracies 
decreased after a certain number of channels for three out of 
nine subjects. 2) For the remaining 6 subjects, training and 
testing accuracies increased at the beginning. However, after a 
certain number of used channels were added, testing accuracy 
decreased while training accuracy remained stable. 

Comparing the results from both datasets, they show 
distinct trends when increasing the number of channels. While 
for one-dimensional cursor control dataset, the performance 

of 

d in both individual subjects as 
ell as at the group level. 

ent. 2) Increasing the number of used channels 
imp

. At each 
giv

w  
      Another t w the length of the 
slid

s) has 
esults. Under the fast calculation 

con

steadily increased with more channels, the performance 
motor imagery tasks dataset reached the best at a subset of all 
channels. This was observe
w

IV. DISCUSSION 

The present results suggest: 1) For the motor imagery tasks 
paradigm, there exists an optimal number of channels for 
selection. A reduced number of channels can achieve the best 
training and testing classification accuracies. Thus, much 
preparation work can be saved during the motor imagery 
experim

roves the classification accuracy of the one-dimensional 
cursor control paradigm. Thus, for conditions pertaining to 
accuracy, we should use as many channels as possible.  

A. Number of Channels  
During this study, for each dataset, the electrode montages 

were selected for best classification performance. The channel 
numbers changed from 2 to 4, 8, 16, 32 and 59/62

en number, all of the subjects shared the same montage. 
When the number of channels increased, some new channels 
were added into the electrode set, keeping the previous 
channels still in the new electrode set. Thus we can conclude 
that it is the increased number of channels that improves the 
performance, and not the montage change. 

B. Length of Sliding Windo
est was made to study ho

ing window affects the classification performance. 
Lengths of 40, 80, 120, and 160 sampling points were 
separately chosen as the algorithm parameters. Our results 
indicate that the performance remained nearly consistent from 
40 to 160 sampling points. Overall, there was no significant 
difference. This implies that a length of 40 sampling points 
(i.e. 0.2s) is long enough to include a complete motor-imagery 
task in an online cursor control data trial. However, in this 
study, the average length of the cursor control trial is around 

 of 120, sample points (600 m3s and a sliding window
proved to yield good r

dition, a sliding window of 40 or 80 points can be chosen. 
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r stu
rmance will be less consisten

ulti-dimensional cursor control, one-dimensional cu
ontrol is a relatively simple paradigm, which makes use 

egions. It remains to be shown 
s would improve the perfor

University of Pennsylvan
making the m dataset available. 

 

 2004.  
[6] H. Yuan, A. Doud, A. Gururajan, and B. He, “Cortical imaging of 

eventrelated (de)  online con
brain–computer int  estimates in fr

rra. A data 
analysis competition to evaluate machine learning algorithms for use in 

brain-computer interfac eural Syst. Rehabil. Eng. C. Performance Stability  

      Data varies between trials as well as between sessions. If 
different trials are selected as training sets, the classification 
performance may change, especially when trials of low 
signal-to-noise ratio are included in the dataset. Ou dy 

tshows that classification perfo  
[10]  and direct brain-computer 

communication,” Proc IEEE, 89(7): 1123–34, 2001. 
 J. Lv, M. Liu, “Common Spatial Pattern and Parti

when a smaller number of channels are selected. In contrast, 
using a larger number of channels, such as 30, 50 or 60 
channels, will keep the performance consistent through such 
changes. This finding represents an additional benefit of using 
a large number of channels.  

V. CONCLUSION 
 The results of this study indicate that using a large number 

of channels leads to improved classification results for the 
online cursor control paradigm. This is in contrast to the 
previous understanding that in offline motor imagery tasks 
paradigm, a subset of scalp electrode channels yields the 

al performance. However, compared with optim
m rsor 

of 
if 

7-25, 2007. 
[16] H. Yuan, C. Perdoni, B. He, “Relationship between Speed and EEG 

Activity during Imagined and Executed Hand Movements,” Journal of 
Neural Engineering, 7(2), doi:10.1088/1741-2560/7/2/026001, 2010 
(Featured Article). 

c
fewer brain functions and r
higher number of electrode mance [17] H. Yuan, T. Liu, R. Szarkowski, M. Savage, J. Ashe, B. He, “An EEG 

and fMRI Study of Motor Imagery: Negative Correlation of BOLD and 
EEG Activity in Prima

when more complicated paradigms are involved. The present 
results suggest that increased number of scalp electrodes will 
improve online BCI performance.  
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