
  

 

Abstract—Recently, local field potentials (LFPs) have been 

successfully used to extract information of arm and hand 

movement in some brain-machine interfaces (BMIs) studies, 

which suggested that LFPs would improve the performance of 

BMI applications because of its long-term stability. However, 

the performance of LFPs in different frequency bands has not 

been investigated in decoding hand grasp types.  Here, the LFPs 

from the monkey’s dorsal premotor cortices were collected by 

microelectrode array when monkey was performing 

grip-specific grasp task. A K-nearest neighbor classifier 

performed on the power spectrum of LFPs was used to decode 

grasping movements.  The decoding powers of LFPs in different 

frequency bands, channels and trials used for training were also 

studied. The results show that the broad high frequency band 

(200-400Hz) LFPs achieved the best performance with 

classification accuracy reaching over 0.9. It infers that high 

frequency band LFPs in PMd cortex could be a promising 

source of control signals in developing functional BMIs for hand 

grasping. 

I. INTRODUCTION 

Brain machine interfaces (BMIs) could directly extract 
movement information from the neural activities of motor 
cortex and help the paralyzed patients to restore their lost 
motor functions. Hand grasping, one of the commonly used 
motor functions, is the most important for people to interact 
with the environment in daily life [1]. Harnessing the cortical 
motor-related activities to control robotic hand for restoring 
grasp motion is still particular challenging. Recently, some 
research groups in BMI have demonstrated different grasp 
types can be successfully classified from single unit activities 
(SUAs) [2, 3, 7]. However, most SUAs will gradually decay 
and disappear over one or two years later after the electrodes 
are implanted, which greatly limits the implementation of 
BMIs in grasp reconstructing. Compared with SUAs, local 
field potentials (LFPs) are likely more stable and can be 
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recorded for a longer time [4]. Therefore, it is worthwhile to 
investigate the decoding power of LFPs for improving neural 
control of grasping. 

In the recent years, many studies have reported the 
representation of low-frequency band LFPs of object-specific 
grasp movement. Spinks et al. investigated low-frequency 
bands of LFPs (<50 Hz) from primary motor cortex (M1) and 
F5 and revealed high selectivity of the beta-frequency range 
during stable holding periods of grasping [5]. Asher et al. 
found that low-frequency LFPs (<100Hz) from posterior 
parietal cortex were also selective to different grasp types, 
despite that they are less informative than spike signals [6]. 
Similarly, low-frequency LFPs recorded from dorsal premotor 
cortex (PMd) and ventral premotor area (PMv) were used to 
discriminate two grasp types and an accuracy of 73% was 
achieved [7]. All these studies were focused on low-frequency 
components of LFPs. Although Zhuang and Bansal et al 
showed that grasp aperture can be decoded successfully from 
LFPs within 200-400 Hz [8, 9], no study had been reported to 
use high-frequency LFPs to decode grasp types to our 
knowledge. Without the knowledge about the relationship 
between grasp types and all frequency components of LFPs, it 
is hardly possible to take full advantage of such informative 
signals.  

Therefore, this paper focuses on revealing the decoding 
power of high-frequency LFPs on grasp types. We designed 
an experimental paradigm, in which a monkey was instructed 
to perform grasping tasks with four distinct hand gestures, and 
meanwhile LFPs were recorded from the PMd of the monkey. 
The patterns of low and high-frequency bands of the LFPs 
were analyzed and clear selectivity to grasp types was 
observed for both bands.  Then we tested the decoding 
performance of individual frequency bands and found that the 
broad high (200-400 Hz) frequency band significantly 
outperformed other frequency bands. The average 
classification accuracy was over 90%, which had not been 
achieved in previous publications. 

II. MATERIALS AND METHODS 

A. Behavioral Task and Data Acquisition 

In the experiment, one adult male Macaque mulatta 
monkey was trained to grasp one of four objects with different 
shapes using his right hand following visual cues from the 
central location of the objects. The experimental paradigm 
was shown in Figure1A. Four objects used in the experiment 
were plate, cone, cylinder and ring respectively in Figure1B. 
Before the experiment, the monkey was given limited water. 
During the experiment, the monkey was seated on a chair in a 
dark room with his head restrained to face the four objects. At  
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Figure 1.  The grasping movement under visual cues of four differently 

shaped objects. (A) Monkey grasped objects according to the visual cue, at 

the same time, LFP signals were recorded from PMd cortex. (B) The four 

typical shaped objects, which were cylinder, plate, ring and cone respectively. 

(C) Experimental procedure of a trail in details, lasting about 4s. 
 

the beginning of a trial, his hand was off the object. Once the 
visual cue , which is the background light of an object, was on 
(Light ON) , the monkey was required to grasp the 
corresponding object for 3 to 4 seconds, and then put its right 
hand back when the visual cue was off (Light OFF). The 
monkey could obtain drops of water as reward at the end of a 
successful trial. The experimental procedure is illustrated in 
Figure1C. The experimental paradigm only had two visual 
cues to control the start and the end of the grasp movement, 
which was easy to learn for the monkey.  

After the monkey being well trained within this 
experimental paradigm, i.e., he could complete reach grasp 
movements correctly, a 96-channel microelectrode array 
(Blackrock Inc., USA) was implanted in the monkey’s PMd 
cortex. 

The monkey was allowed to recover from the surgery for 
one week before signal recording, and then we did the task as 
follows. Multi-channel neural signals from PMd and relevant 
external events were recorded synchronously when the 
monkey was performing reach-grasp movement. Signals were 
acquired and stored by a Cerebus multichannel data 
acquisition system (Blackrock Inc., USA) to filter 64channels 
of neural signal analogy and recorded them with 30 kHz 
sampling rate. 1-64channel recorded the signal from PMd. 
Each block lasted 10 minutes. And we randomly shuffled the 
positions of the four objects’ to eliminate the effect of hand 
position and guaranteed that the collected brain signal was 
only related to the grasp gesture. In offline data processing, 
neural signals were down sampled to 1 kHz, and then filtered 
by a 2nd order digital Butterworth filter with band 0.3Hz to 
450Hz to extract LFPs. In addition, the signal was also filtered 
by notch filter.   

All the surgery and experimental procedures conformed to 
the Guide for The Care and Use of Laboratory Animals (China 

Ministry of Health) and were approved by the Animal Care 
Committee at Zhejiang University, China. 

B. Data Processing 

Before the time-frequency analysis, we needed to identify 
the frequency bands of the local field potential signals. Similar 
to previous studies, we divided the LFP signal into seven 
frequency bands, these bands corresponded to: δ(0.3-5Hz), 
θ-α (5-15Hz), β(15-30Hz), γ1(30-50Hz), γ2 (50-100Hz), 
γ3(100-200Hz) and a broad high-frequency band(bhfLFP, 
200-400Hz) [9].  

The power spectrum of each frequency band was 
estimated by multitaper spectral analysis, which had been 
successfully used in some other LFP studies [10]. To generate 
input features for classification, we partitioned the time period 
of LFP recording into contiguous 100ms windows and the 
power spectrum of each frequency band was integrated in 
each of these windows. The feature vector of each time 
window is the concatenation of the integrated power values of 
the current window and the previous nine windows, which are 
included to take ‘memory’ information into account. 

C. Classification and Evaluation 

A K-nearest neighbor (KNN) classifier was adopted here 
to decode the four types of grasp movements [2, 11]. Given a 
testing sample, the classifier predicts its corresponding grasp 
type based on the labels of its K nearest training samples in the 
feature space. The power spectrum of one second LFPs 
containing 10 bins after the visual cue was the input of the 
KNN classifier and the output of the classifier was one of the 
four types of grasp motions. Besides, 5 fold cross-validation 
was used here to evaluate the classification performance.  

In addition, we calculated the confusion matrix in order to 
investigate the difficulty of different grasping types for the 
monkey, and the decoding accuracy varies with the number of 
channels and trials. When computing the decoding accuracy 
varies with the number of channels, we randomly chose a 
channel to decode the test set at first, then, adding another 
channel every time to decode the same test set, the result is the 
average of 10 calculations, based on 5 fold cross-validation in 
every calculation. Similarly, when computing the 
classification accuracy varies with the number  of trails, we 
firstly chose a trail in each type of grasp motion in the same 
session and then randomly added another trail of each grasp 
motion type every time, the result is also the average of 10 
calculations.  

III. RESULTS 

The following results are based on 4 sessions, including 
568 conducted over a period of 1 month. The time intervals 
between successive sessions are 3 days, 20days and 2days.. 

 After being well trained, the monkey could learn to start 
the grasp movement of 3s, after the Light ON, and held the 
object all the time before the Light OFF.  
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A. LFP time frequency 

To test the hypothesis that, the power spectrum of LFPs 
can be used to decode grasp motions, we normalized the 
time-frequency map for LFPs from one channel. As we can 
see from Figure2, which clearly show the different LFPs 
patterns for four objects in one session,  the variation of the 
LFPs power spectrum is evidently distinguishable between 
four grasp motions in the high frequency bands, namely 
between 100Hz to 400Hz. 

Besides, the signal shown in the Figure 2 is during the time 
from the Light ON to Light OFF. Light ON marks the 
beginning of the visual cue, and Light OFF marks the end of 
grasp movement promoting the monkey to put hand back. The 
variation of high frequency bands averagely begin around 0.5s 
after the visual cue, which means the LFP signal is possibly 
related to the grasp movement of the monkey movement of 
grasping and holding.  

Above all, it is consistent with the idea that the patterns of 
the power spectrum changed progressively across different 
grasp motion and using the power spectrum of LFPs to decode 
grasp motion is feasible.  

B. LFP decoding results 

Based on the analysis in part A, we performed KNN 
classification on the power spectrum of LFP signal to decode 
the types of grasp motions, and then calculated the 
classification accuracy of each frequency band in all sessions 
by executing the 5 cross-validation procedure and averaging. 
The average results of all the sessions in each frequency band 

 

Figure 2.  Time-frequency spectra of LFP signals for the four grasp types. 

The signals were from the same channel and aligned with the 

movement onset. 

are showed in Figure 3. The average classification accuracy 
can be obtained as high as 0.95 when we used the LFP signals 
from PMd in the broad high (200-400 Hz) frequency band. 
Both high frequency bands (100Hz-400Hz) and low 
frequency bands (0.3Hz-15Hz) show a certain decoding 
accuracy, while other frequency bands show low decoding 
accuracy.  

This finding suggests that the LFPs from PMd encoded a 
great amount of information related to object-specific grasp 
movements, and suitable for decoding the types of grasp 
motions, especially the broad high frequency band, which led 
to the highest decoding power of 0.95. 

C. LFP robustness 

For the purpose of investigating the difficulty of different 
grasping types for the monkey, we analysis the 
misclassification rate of four grasp types in all recording 
sessions and find out that although the misclassification rate of 
the four grasp motions is low, both cone and ring shaped 
objects are still easy to be misclassified, the misclassification 
nearly 10% of all sessions, see TABLE1, which is the confusion 
matrix of classified grasp motion and actual grasp motions. 
We used the decoding accuracy of broad high frequency band. 
There exist two possibilities leading to this result: 1.because 
the grasping gestures are similar between themselves, 
2.because the brain electric signals patterns of these two 
grasping gestures are similar. 

 

 

Figure 3.   The decoding accuracies of the seven frequency bands of LFPs. 

The broad high frequency band (200-400 Hz)  produced the highest 

decoding accuracy (95%). 

TABLE 1 CONFUSION MATRIX FOR FOUR OBJECTS IN ALL SESSIONS(%) 

Grasp motions Cylinder Plate Cone Ring 

Cylinder 0.96 0 0.01 0 

Plate 0.03 0.94 0.03 0.05 

Cone 0.01 0.03 0.92 0.05 

Ring 0 0.03 0.04 0.9 
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In addition, in order to optimize the decoding method we 
firstly need to understand the effect of number of channels on 
decoding power. We trained the KNN classifier by increasing 
the number of channels from PMd in the broad high (200-400 
Hz) frequency band and γ3(100-200Hz)band, both having 
good decoding accuracy and  the results can obtained in 
Figure 4, which including the results of 4 sessions. 
Consequently, we find that, although there is a gap between 
session 2 and session 3 for nearly 20days, the general 
tendency was similar to each other. When the channel number 
great than 30, the gain of decoding accuracy slows down 
significantly, which means that the added channels does not 
contributes a lot, or providing redundant information.  

We also increased the number of trials in training set in the 
broad high (200-400Hz) frequency band and 
γ3(100-200Hz)band for the KNN classifier, which can be 
inspected in Figure 5. We find that the decoding accuracy 
quickly increases along with the number of trials increasing 
from 1 to 7. Generally, the decoding accuracy improved with 
number of trials increases, however 7-8 trials for training is 
enough to achieve good decoding power. 

Overall results show that, apart from the characteristic of 
long-term stability of LFP signals, we can also utilize fewer 
channels and fewer trials to decode the grasp motions. 

 

Figure 4.  Decoding accuracy varies with number of channels for each 

sessions and 2 frequency bands(200Hz~400Hz and 100Hz~200Hz) 

When the number of channels reaches to 30, the decoding accuracy is 

acceptable 

 

Figure 5.  Decoding accuracy varies with number of trialsin  session3 and 

2 frequency bands(200Hz~400Hz and 100Hz~200Hz). When the 

number of trials reaches to 7, the decoding accuracy is acceptable. 

IV. CONCLUSIONS 

     The results demonstrate that four different grasp types can 

be reliably distinguished in reach grasp movements using 

LFPs from the monkey‘s PMd cortex. In particular, the broad 

high frequency band of LFP outperformed other frequency 

bands by producing accuracies higher than 90%. This 

suggests that high-frequency LFPs are valuable for building 

BMIs to control prosthetic hands.  
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