
  

 

Abstract— In a Brain-Computer Interface (BCI) system, the 
variations of the amplitude and the phase in EEG signal convey 
subjects’ movement intention and underpin the differentiation 
of the various mental tasks. Combining these two kinds of 
information under a uniform feature extraction framework can 
better reflect the brain states and potentially contribute to BCI 
classification. Here the Common Spatial Pattern (CSP) and the 
Phase Locking Value (PLV) were used to capture the amplitude 
and the phase information. To integrate these two feature 
extraction procedures, the Empirical Mode Decomposition 
(EMD) is introduced in preprocessing which behaved as filter 
bank to optimize bands selection automatically for CSP and 
exactly calculate the instantaneous phase for PLV. The most 
discriminative features were selected from the feature pool by 
the sequential floating forward feature selection method (SFFS). 
The proposed method was applied to both public and recorded 
datasets (each n=4). Compared with the traditional CSP, the 
average increment of classification accuracy is 5.4% (2.0% for 
public and 8.7% for recorded datasets), which both manifests 
statistically significances (p<0.05). Moreover, we preliminarily 
investigate the possibility of the online realization of this method 
and it shows a comparable result with the offline result.  

I. INTRODUCTION 

rain-computer interface (BCI) system detects the human 
motor intention based on various senor modalities such as 

electroencephalogram (EEG) recordings and translates it as 
the control signal to outside devices without using nerves and 
muscles [1]. In a popular motor imagery (MI) based EEG BCI 
system, the commonly used signal pattern is the sensorimotor 
rhythms amplitude changes in the primary motor cortex (M1) 
during movement imagination, which called event related 
desynchronization/synchronization (ERD/ERS) [2]. Moreover, 
the phase coupling of oscillatory activity which represents the 
interaction between M1 and supplementary motor area (SMA) 
is also a characteristic of MI [3]. Combination of the 
amplitude and the phase information under a uniform feature 
extraction framework could better reflect brain activities and 
potentially facilitate the BCI classification. 

Different feature extraction methods have been proposed 
to distinguish variant mental tasks. To detect the ERD/ERS 
characterized MI intention, a popular algorithm named 
Common Spatial Pattern (CSP) is utilized to construct spatial 
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filters to maximize the variance between two mental tasks [4]. 
To quantify the phase coupling represented MI intention, 
phase locking value (PLV) is applied to calculate the 
instantaneous phase difference in a statistical means between 
two EEG channels in relevant frequency band [3]. Therefore, 
it is a straightforward idea that incorporation of these two 
feature extraction methods could provide reliable features and 
contribute to enhance classification accuracy. However, the 
effective of CSP relies on pre-filtering EEG signal into the 
specific frequency bands that mostly correlated with the MI. 
And the reliable PLV estimation depends on precisely 
extracting the instantaneous phase within a single narrow band 
component. In order to integrate these two methods, novel 
signal processing approach is required to meet the dynamic 
phase changes of EEG signal and adaptively optimize the 
specify frequency selection for individual subject. 

In this paper, we employ empirical mode decomposition 
(EMD) [5] to satisfy these two requirements simultaneously. 
The EMD method could behave as filter bank [6] and the 
EMD decomposed intrinsic mode functions (IMFs) in a sifting 
process have well-behaved Hilbert transforms. In this way, the 
specific frequency band could be selected automatically and 
the instantaneous phase could be well-calculated. And then, 
the sequential floating forward feature selection algorithm 
(SFFS [7]) is used to select the most discriminative features 
for next step classification. Public BCI competition IV dataset 
I with four subjects performing left and right hand mental 
tasks and recorded EEG dataset from four volunteers are used 
to evaluate the proposed method. The architecture of the 
proposed method is shown in Fig. 1. 

II. PROPOSED METHODS 

A. EEG Acquisition and Online Experimental Paradigm 

Four naïve right-handed healthy subjects participated in 
the experiment. The EEG signal was sampled at 1000Hz. 
Forty one electrodes over M1 and SMA was selected. The 
experiment paradigm was that: during the beginning 2 seconds, 
two relaxing hands on the screen were presented to the subject, 
and a “Ready” cue was shown to draw the subject’s attention 
in next 2 seconds. At second 4, a “Go” cue was appearing to 
instruct the subject to fulfill a hand grasping task in the virtual 
world. The subject was asked to control the virtual hand to 
catch a tennis ball by imagining hand movement in a 4 
seconds period. The position of the virtual hands was 
determined by the power difference between two pre-selected 
electrodes for each subject. The online experiment paradigm 
was shown in Fig. 2 and the EEG data was recorded for further 
analysis. The recorded dataset comprised 200 trials (100 per 
class) in two sessions. The rest time between two sessions is 
15 minutes. The trials with obvious eye movement artifacts 
were excluded by visualizing. 
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For a more reliable comparison to other public methods, a 
public dataset from BCI competition IV dataset I with four 
subjects was also used to perform the method evaluation.   

 
Figure 1.  Architecture of the proposed method 

 

Figure 2.  The electrode postions of the recorded dataset (left) and the 
paradiam (right) of the online experimment 

B. Reference-free and Preprocessing 

As the potential from the recording reference electrode 
could contaminate the EEG signal and distort the subsequent 
PLV calculation [8], we employed a method [9] to identify and 
remove the activity from the reference electrode. The 
reference potential ^ref (t)^ref (t) was estimated as:  

 ^ref(t) = wTx(t) w = ¡
©¡1

xx

1T©¡1
xx 1

1^ref(t) = wTx(t) w = ¡
©¡1

xx

1T©¡1
xx 1

1 (1) 

where x(t)x(t) is the EEG signal. ©xx©xx is the correlation matrix of 
x(t)x(t) and  is a vector of ones. After that, the reference 
potential was subtracted and the EEG signal was filtered in 
7-30Hz and 5-40Hz for CSP and PLV procedure separately. 

C. EMD Algorithm 

EMD method is a data-driven and self-adaptive approach 
that represents a signal as a sum of amplitude modulation 
frequency modulation components [5]. EMD decomposes a 
given signal into IMFs and residual that could be expressed as: 

 x(t) =

nX
i=1

ci(t) + r(t)x(t) =

nX
i=1

ci(t) + r(t) (2) 

where x(t)x(t)  is the given signal, ci(t); i =1; :::nci(t); i =1; :::n  is the 
decomposed IMFs and r(t)r(t) is the residual. For the detailed 
procedure of the sifting process could see [5].  

D. CSP Algorithm 

The CSP method constructs spatial filters and projects the 
original signal into a new space in order to maximize the 

differences in variances of two kinds of tasks [4]. The 
projected signal Scsp(t)Scsp(t) is given by: 

 Scsp(t) =Wx(t)Scsp(t) =Wx(t) (3) 

where W2RC£CW2RC£C (  indicates the channel number) is the 
constructed spatial filters and x(t) 2RC£Tx(t) 2RC£T is the original 
signal (TT indicates the time samples). Then, the CSP features 
FeaFea are designed as: 

 Fea = log
var(Sf (t))

2mP
i=1

var(Si(t))

; f = (1 ¢ ¢ ¢ 2m)Fea = log
var(Sf (t))

2mP
i=1

var(Si(t))

; f = (1 ¢ ¢ ¢ 2m) (4) 

where Sf(t)Sf(t) is the first mm and last mm rows of Scsp(t)Scsp(t).The mm 
was set to be 3 in this paper. These series frequency 
modulated IMFs decomposed by EMD are averaged in two 
ways for the CSP feature extraction step (the mean value of 
IMF1 and IMF2, the mean value of IMF1, IMF2 and IMF3). 

E. Hilbert-Huang Transform and PLV Calculation 

Hilbert-Huang Transform (HHT) employs the EMD 
method as a preprocessor in face of the unwrapping problem 
in Hilbert transform [5]. The instantaneous phase of a given 
signal ci(t)ci(t) is calculated as: 

 ~ci(t) =
1

¼
p:v

+1Z
¡1

ci(¿)

t ¡ ¿
d¿~ci(t) =

1

¼
p:v

+1Z
¡1

ci(¿)

t ¡ ¿
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 μi(t) = arctan
~ci(t)

ci(t)
μi(t) = arctan

~ci(t)

ci(t)
 (6) 

where ~ci(t)
~ci(t) is the Hilbert transform of ci(t)ci(t) and p:vp:v implies 

the Cauchy principal value. μi(t)μi(t) denotes the instantaneous 
phase.  

Given two signal x1(t)x1(t) and x2(t)x2(t), and μ1(t)μ1(t) and μ2(t)μ2(t) 
their corresponding instantaneous phases, the phase 
difference is defined as ¢μ(t) =μ1(t)¡μ2(t)¢μ(t) =μ1(t)¡μ2(t). This phase 
difference is fluctuating and a statistical criterion is employed 
to quantify the degree of phase locking. Then the PLV is: 

 PLV (t) = jhej¢μ(t)itjPLV (t) = jhej¢μ(t)itj (7) 

where h¢ith¢it indicates the operator of moving averaged over a 
time. In the case of two signal are completed synchronized, 
¢μ(t)¢μ(t) is a constant and PLV (t)PLV (t) equals 1. Conversely, if the 
two signals are unsynchronized, ¢μ(t)¢μ(t) follows a uniform 
distribution and PLV (t)PLV (t) equals 0. Here PLV calculation was 
applied to the IMF2 that contains the μ  rhythm. For 
investigating the PLV between M1 and SMA, six pairs of 
electrodes were selected, i.e. FCz-CFC3, FCz-C3 and 
FCz-CPC3 for the left cortex, FCz-CFC4, FCz-C4 and 
FCz-CPC4 for the right cortex. A time window of 1s is 
adopted for calculating and the sliding window is 100ms. 

For the purpose of mitigating the influence of the volume 
conduction effect on the PLV calculation, we utilized the idea 
that from the ERD/ERS calculation [2] and re-calculated the 
PLV in relation to a 2s reference period during pre-task 2 
seconds. It can be expressed as follows: 
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 PLVref =
1

T

r0+TX
r0

PLV (t)PLVref =
1

T

r0+TX
r0

PLV (t) (8) 

 PLVr(t) =
PLV (t) ¡ PLVref

PLVref

£ 100%PLVr(t) =
PLV (t) ¡ PLVref

PLVref

£ 100% (9) 

where PLVrefPLVref  is the mean PLV of the reference period 
[r0; r0 +T][r0; r0 +T] and PLVr(t)PLVr(t) is the re-calculated PLV (see Fig. 
3). After that, the PLVr(t)PLVr(t) was re-averaged to constructed a 
6 elements feature vector and each element represented a 
PLV within a time period. Hence, the PLV feature vector can 
be expressed as: 

 PLVC3 = [plv1; plv2 ¢ ¢ ¢ ; plv6]1£6PLVC3 = [plv1; plv2 ¢ ¢ ¢ ; plv6]1£6 (10) 

where PLVC3PLVC3 indicates the PLV feature vector calculated 
between FCz and C3 electrodes. Next, we constructed the 
two-dimension PLV features (e.g. FCz-C3 with FCz-C4) in 
corresponding two electrode pairs. It can be expressed as: 

 PLVC3;C4 =

·
plv1C3 ¢ ¢ ¢ plv6C3

plv1C4 ¢ ¢ ¢ plv6C4

¸
2£6

PLVC3;C4 =

·
plv1C3 ¢ ¢ ¢ plv6C3

plv1C4 ¢ ¢ ¢ plv6C4

¸
2£6

 (11) 

where PLVC3;C4PLVC3;C4 is the constructed feature. The first row of 
the matrix indicates PLVC3PLVC3 and the second one is  PLVC4PLVC4 . 
Then, the features were normalized and we obtained 3 
two-dimension PLV feature matrixes over all channel pairs. 
Then we connected these two-dimension PLV feature 
matrixes and constructed one PLV feature matrix that can be 
expressed as (due to the limitation of the recorded electrodes, 
in recorded dataset there are only two pairs of electrodes, 
FCz-C3 and FCz-C4, the feature matrix was not connected): 

 PLVallp =

·
plv1CFC3 ¢ ¢ ¢ plv1C3 ¢ ¢ ¢ plv1CPC3

plv1CFC4 ¢ ¢ ¢ plv1C4 ¢ ¢ ¢ plv1CPC4

¸
2£18

PLVallp =

·
plv1CFC3 ¢ ¢ ¢ plv1C3 ¢ ¢ ¢ plv1CPC3

plv1CFC4 ¢ ¢ ¢ plv1C4 ¢ ¢ ¢ plv1CPC4

¸
2£18

 (12) 

 PLVallr =

·
plv1C3 ¢ ¢ ¢ plv6C3

plv1C4 ¢ ¢ ¢ plv6C4

¸
2£6

PLVallr =

·
plv1C3 ¢ ¢ ¢ plv6C3

plv1C4 ¢ ¢ ¢ plv6C4

¸
2£6

 (13) 

where PLVallpPLVallp  is the connected two-dimension PLV 
features for public dataset and PLVallrPLVallr  for the recorded 
dataset. Subsequently, we used a linear algebra method to 
evaluate the feature separability and selected 3 most 
discriminative two-dimension PLV features from the feature 
pool: 

 D =
kfleft ¡ frightk

2

tr(covleft)2 + tr(covright)2
D =

kfleft ¡ frightk
2

tr(covleft)2 + tr(covright)2
 (14) 

where DD  reflects the separability of the two-dimension PLV 
features between two kinds of mental tasks and the higher 
value indicates more discriminative. fleftfleft and frightfright is the 
mean value of the PLV features in left and right hand task, 
respectively. k¢kk¢k represents the 2-norm. covleftcovleft and covrightcovright 
are the covariance matrixes of the PLV features 
corresponding to the different tasks. tr(¢)tr(¢) means the trace 
calculation. Finally, we constructed 3 two-dimension PLV 
features in selected electrode pairs and selected time periods. 

F. SFFS Algorithm and Classification 

The 3 two-dimension CSP features and 3 two-dimension 
PLV features were combined and fed into the SFFS feature 
selection algorithm. 3 two-dimension features were selected 

and used for the final classification. The linear support vector 
machines (LSVM) was chosen as the classifier. A 10×10 
cross-validation was applied to evaluate the classification 
performance. A 3s EEG signal segment during the execution 
period was used for the CSP and PLV feature extraction 
procedure for both the public and the recorded dataset.  

III. RESULT 

A. Classification Result 

The classification accuracy of the proposed method on 
public and recorded dataset was showed in Table I and Table 
II. CSP0 means the traditional CSP method. Pha indicates the 
classification accuracy with only the PLV features. PI1I2 and 
PI1I2I3 is the result of the proposed method that utilized the 
mean of IMF1 and IMF2 or the mean of IMF1, IMF2 and 
IMF3 in CSP feature extraction step. 

As illustrated in Table I, the PI1I2I3 led to an improved 
average performance of 92.97% comparing with the other 
methods. And a statistically significant difference appeared 
between PI1I2I3 and the traditional CSP method (paired t-test, 
p = 0.027). The PI1I2 failed to increase the average accuracy 
and it is possible that the IMF3 also conveys the motor 
imagery intention in subject B but it was omitted by the PI1I2 
method. As shown in Table II, both the PI1I2 and PI1I2I3 

method lead to an improvement of the classification accuracy 
and reveal a significant difference (paired t-test, p = 0.045 for 
PI1I2 method; paired t-test, p = 0.044 for PI1I2I3 method). The 
Pha method failed to achieve a high average classification 
accuracy means only the phase features is insufficient to 
completely reflect the motor imagery intention, although it 
may be well discriminates different tasks for some individual 
subjects (e.g. A in Table I and S1 in Table II).  

The high classification accuracy of the PI1I2I3 method 
demonstrates that the proposed feature extraction method 
fulfills the requirements of the CSP filter and PLV calculation 
simultaneously. And the combination of the amplitude and the 
phase information under a uniform feature extraction 
framework could better reflect brain activities and contribute 
to enhance the classification accuracy. 

 

 
Figure 3.  The re-calculated PLV of one subject during two kinds of tasks in 

public dataset (top row) and one subject of recorded dataset (bottom row) 
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TABLE I 
CLASSIFICALTION ACCURACY (MEAN ± STANDARD DEVIATION IN %) OF THE 

PUBLICLY AVAILABLE DATASET 

 
Statistical significant result is displayed in italic with a superscript asterisk 

TABLE II 
CLASSIFICALTION ACCURACY (MEAN ± STANDARD DEVIATION IN %) OF THE 

RECORDED DATASET 

 
Statistical significant result is displayed in italic with a superscript asterisk 

TABLE III 
CLASSIFICALTION ACCURACY (MEAN ± STANDARD DEVIATION IN %) OF THE 
PUBLICLY AVAILABLE DATASET AND RECORDED DATASET WITHOUT SFFS 

 

 
Figure 4.  The first three highest feature selection rates in the SFFS 

procedure for public dateset (left) and  recorded dateset (right). The red 
dashed line indicates the 100 percent selection rate 

B. Classification without SFFS 

As the feature selection procedure is time-consuming, we 
further evaluated the classification accuracy without the SFFS 
procedure. First, for each subject we calculated the PI1I2I3 
feature selected times by the SFFS in the 10×10 
cross-validation and divided it by the total classification times 
as the feature selection rate. As illustrated in Fig. 4 that 
different types of features (PLV or CSP features) have been 
selected. Subsequently, we selected those features which 
reached the top three highest rates as the input to the 
cross-validation and omitted the SFFS step. As shown in 
Table III, the classification accuracy is comparable with the 
result containing the SFFS procedure. It indicates that the 
information contained in these selected features is relatively 
stable in each classification time window. Moreover, it implies 
that the feature selection procedure could be accomplished 
beforehand and thus it provides the possibility of the online 
realization of the proposed method. 

IV. CONCLUSION 

The methodology presented in this paper is a first step to 
integrate the CSP and PLV features extraction method based 

on the Empirical Mode Decomposition. The purpose of the 
method is to fulfill the prerequisite of the CSP filter and the 
PLV calculation simultaneously, and reflect the brain state 
during motor imagery form different points of view to 
contribute to enhance the classification accuracy. It utilizes 
the filter bank property of the EMD method to satisfy the 
frequency band requirement in CSP method and employed 
the IMFs decomposed by EMD as its well-behaved Hilbert 
transform property to precisely calculate instantaneous phase. 
It provides a novel strategy of feature extraction procedure for 
the EEG-based motor imagery BCI system. 

Moreover, CSP and PLV generally convey the subject‘s 
motor intentions in two different ways. CSP can capture the 
signal amplitude changes and PLV represents the phase 
dynamics. And these two types of phenomenon could both 
exist in event related EEG and relatively complemented for 
each other. Thus combining them together is meaningful, 
especially when only one type is insufficient to reflect the true 
brain state and then another could be an alternative. 

Finally, this work preliminarily investigates the 
possibility of the online realization of the proposed method. 
However, because the EMD algorithm is sensitive to the 
noise so the predefined IMFs index could be inappropriate for 
online processing, and future work is required to study how to 
improve the robustness of the method, especially for online.  
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