
  

 

Abstract— This paper describes a project whose goal was to 

establish the feasibility of using unobtrusive cognitive 

assessment methodologies in order to optimize efficiency and 

expediency of training.  QUASAR, EyeTracking, Inc. (ETI), 

and Safe Passage International (SPI), teamed to demonstrate 

correlation between EEG and eye-tracking based cognitive 

workload, performance assessment and subject expertise on X-

Ray screening tasks.  

Results indicate significant correlation between cognitive 

workload metrics based on EEG and eye-tracking 

measurements recorded during a simulated baggage screening 

task and subject expertise and error rates in that same task. 

These results suggest that cognitive monitoring could be useful 

in improving training efficiency by enabling training 

paradigms that adapts to increasing expertise.  

I. INTRODUCTION 

The goal of learning is to transform novices to experts. 
Training transitions students from a state of work that is 
deliberate, monitored, and emotional to a state of work that is 
effortless and natural, but not thoughtless or accidental.  In 
order to evaluate expertise, tests are generally administered to 
assess performance, such as whether students are able to 
complete tasks successfully, or whether they can generalize 
the rules learned. However, such performance-based metrics 
are currently not able to assess the ease with which the task 
was completed, a measure that can help distinguish expertise 
level.   

Learning models suggest that monitoring attention load 
and relating it to performance could help determine expertise 
levels.  Accurate assessment of progression of expertise 
could improve the efficiency of training paradigms.  
Physiological signals such as electroencephalography (EEG) 
and pupillometry have been reported to provide useful 
measures of cognitive workload.  In recent years, Quantum 
Applied Science & Research (QUASAR) has developed 
novel dry EEG sensors that can be used in classroom, 
workstation, and airport contexts. Likewise, eye tracking 
systems can be mounted near monitors or incorporated into 
headsets, enabling practical deployment. QUASAR and 
EyeTracking, Inc. (ETI), a market leader in eye-tracking 
analysis, have developed gauges based on these deployable 
sensor technologies for unobtrusively assessing and 
monitoring attention, cognitive workload, and fatigue. 
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It is hypothesized that monitoring cognitive effort during 
training could be used to elucidate the progression towards 
expertise.  In order to test the hypothesis QUASAR and ETI, 
teamed with Safe Passage International (SPI), a leading 
provider of Transportation Security Officers (TSOs) screener 
training and developer of training software for security 
applications. 

A key portion of the TSOs’ role is X-Ray screening, 
which is a repetitive visual search task that often has a very 
low probability of encountering a threat, but extremely high 
consequences if a serious threat is missed. The nature of this 
task frequently induces fatigue, boredom and distraction. 
Similar factors are present in other repetitive screening jobs 
such as radiologists screening medical X-ray or MRI or other 
imaging, cytologists evaluating microscopic samples, or 
intelligence analysts searching through satellite imagery. For 
TSO purposes, training efficiency and effectiveness is of 
special importance due a very high attrition rate, which 
therefore requires an effective way to bring new TSOs up to 
proficiency.  Current TSO training constitutes of an initial 
training of over 100 hours, and continuing training of at least 
three hours/week. 

In this paper, the team describes the use of these cognitive 
gauges to assess mental workload during performance of a 
screening task and compare novice and expert screeners. The 
long-term goal of this effort is the development of a training 
system for real-time measurements of physiologic responses, 
in order to provide a customized training 
experience/environment that is optimally suited to each 
specific trainee. 

II. BACKGROUND 

A. Brain-Based Signals in Training Environments 

Over the last decade, several researchers have started 
evaluating or incorporating brain-based signals in training 
and learning environments. EEG has been used to monitor 
the progress of trainees through skill levels or identify indices 
of skill acquisition. One group reported an increase in event-
related alpha power that correlated with amount of practice at 
a shooting task and suggested that it reflected a decrease in 
cortical activity associated with reduced effort required with 
expertise. [1] Another group observed lower coherence 
associated with less cortico-cortical communication in expert 
marksmen compared to skilled shooters, and attributed this 
difference to decreased involvement of cognition with 
expertise. [2] Similar results have been reported with fMRI 
monitoring.  

Eye Tracking research suggests that experts generally 
demonstrate more focused attention on a task than do novices 
[3][4]. Thus, it is to be expected that expert screeners will 
have more deliberate viewing patterns and exhibit fewer 
lengthy saccades than novice screeners. Moreover, they 
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should show higher rates of vergence as a result of their 
focused attention, and develop efficient scanning patterns in 
much the same way that expert pilots demonstrate efficient 
scanning of their instrument panel. Novices are expected to 
show more random scanning behavior, including multiple 
revisits to objects that are not yet fully identified. 

B. QUASAR’s Dry EEG Sensors and Signal Quality 

Scientists at QUASAR have developed a new 
revolutionary through-hair hybrid EEG sensor (Figure 1A). 
[5][6]. These innovative bioelectrodes use a combination of 
high impedance resistive and capacitive contact to the 
subject, which produces adequate sensitivity and bandwidth 
for EEG measurement. The sensors can be applied with light, 
comfortable pressure and record EEG for practically 
unlimited durations without a need for skin preparation or 
electrolytes of any kind.[7] QUASAR has developed a 
headset based on the sensor technology. (Figure 1B) 

A) B)  

Figure 1. A) Hybrid sensors for through-hair measurement of EEG B) 

QUASAR headset on subject.  

These hybrid sensors have been tested in a variety of 
contexts and proven to record EEG signals with high fidelity. 
[5][6] And recently, Air Force researchers evaluated 
QUASAR’s EEG system and reported “results confirm that 
the data collected by the new [QUASAR] system is 
comparable to conventional wet technology.” [8] 

C. EEG Derived Cognitive Gauges 

Research during DARPA’s Augmented Cognition 
program suggested that changes in alertness are a principal 
component of variance in the EEG spectrum and several 
investigators demonstrated the use of spectral changes for 
accurate estimation of alertness and cognitive workload, [9] 
and cognitive fatigue [10]. Furthermore, a number of studies 
have reported that theta is related to increases in attention, 
workload, memory load, and working memory performance, 
and that a large increase in alpha EEG precedes dozing off 
during a simple visual task. [11] 

QUASAR has developed several new algorithms for 
physiological signal analysis. These efforts include 
development and implementation of noise and artifact 
detection, identification and reduction methods, as well as 
cognitive and physiological state classification. Additionally, 
we have developed Partial-Least-Square (PLS)-based 
classification algorithms that enable determination of 
cognitive and physiological states from EEG and ECG data. 
[12]  Briefly, this learning algorithm extracts spectral features 
from the EEG signal, trains cognitive models based on the 
researcher’s interests (attention, workload, fatigue …), then 
processes EEG data in real time producing cognitive state 
measures whose output ranges from 1 to 100 representing the 
relative intensity of the monitored state. The algorithm allows 

for expedient subject specific calibration within minutes, or 
the creation of “normative” models based on EEG features 
reported in the literature to correlate with the state of interest.  

QUASAR has tested and validated this cognitive gauge 
methodology on several research projects, with an emphasis 
on states of engagement, workload, and fatigue. All three 
state models regularly achieve average classifications 
accuracies >90%, as determined by performance on primary 
(game), and secondary (auditory N-Back) tasks, primary task 
difficulty, subjective evaluation (NASA TLX), and time 
duration since last sleep (for fatigue).  [13] 

D. Eye-tracking Based Measures of Cognitive State 

Several measures of eye tracking data can be combined to 
assess inattention, fatigue, alertness, and overload. The 
measures are: Index of Cognitive Activity (ICA, a pupil 
dilation based metric), fixation data, blink data, and vergence 
data. As an example, ETI applied this procedure to a fatigue 
study in which individuals were sleep deprived. It was 
possible to detect fatigue before the individual began to reach 
the eyelid closure levels required in PERCLOS (which is 
based on the percent of time the eye is closed over a full 
minute). The patented procedures developed by ETI require 
only a few seconds to detect fatigue and have demonstrated 
reliability in settings such as automobile driving, visual 
search, and lunar search and recovery simulations. The 
general technique is described in [14] One common use of 
the cognitive state technology is to examine tasks of varying 
difficulty. These procedures correctly identify easy, 
moderate, and difficult tasks based only on the results of the 
eye metric. Typically, 80-95% of all seconds of a task can be 
correctly classified in terms of task difficulty. 

III. EXPERIMENTAL PROCEDURE 

A. System Synchronization 

1) Temporal alignment 

It was critical to time align all data in order to analyze 
relations between them. Three data sources needed to be 
synchronized for this project 

1. EEG data sampled at 240 Hz and its derived gauges 
integrating over 2-second epochs. 

2. Eye-tracking data sampled at 60 Hz, and its derived 
gauges and metrics calculated at 2-second epochs in 
order to conform to the EEG measurements. 

3. X-Ray simulator task events 
Two methods for synchronizing the various components 

of the system were used: 1) The eye-tracking system sent the 
EEG systems sent synchronization triggers. These triggers 
allowed alignment of the collected data. 2) In addition, in 
order for all three software systems to share a same computer 
clock to reference their data collection, we installed them on 
one laptop with an Intel core i7 processor. All three systems 
operated normally and did not interfere with each other’s 
performance. Comparing the timestamps of the triggers and 
event markers, we were able to align all the data files. 

2) Spatial Alignment 
The boundaries of threat objects in the X-Ray images are 

defined in SPI’s data base as x-y coordinates of polygons. 
ETI’s proprietary software places boundaries around objects 
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in order to calculate several eye-tracking parameters such as 
fixation duration, number of revisits or of fixations. In order 
to determine eye-tracking metrics related to threat or 
distractor objects, it is therefore important that the spatial 
coordinates of the objects on the screen are aligned to the 
spatial coordinates of the eye-tracker. ETI calculated the 
proper conversion calculation between the two coordinate 
systems, and verified that identified areas mapped to threat 
objects on the images.  

3) Cognitive State Calibration 
QUASAR’s EEG based cognitive state gauges use data 

recorded during calibration tasks to train models that are later 
used to determine cognitive states. Each task is conducted at 
the beginning and end of the experiment. For these 
calibrations, QUASAR uses a public domain battery of 
psychological tests (Psychology Experiment Building 
Language) to select the most appropriate task from a set of 
standardized cognitive tests. For this work, we selected tasks 
that induce varying levels of cognitive load related to visual 
discrimination tasks and vigilance. Five tasks were set up to 
provide baseline conditions: 

1. Eyes Open (EO) and Eyes Closed (EC) 

2. 3 and 5 grid Matrix Rotation 3 (M3, M5) Task 

3. Visual Detection (VD) Task 

4. Daydream (DD) Task, where subjects were to asked 

daydream for 1.5 mins 

5. Psychomotor Vigilance (PV) Task 

The EEG data collected during these tasks were then used 
by QUASAR’s PLS algorithm to train cognitive workload 
algorithms individualized for each subject. 

B. Experimental Protocol 

Two groups of subjects were recruited to conduct the 
experimental protocol. “Novice” subjects were adults who 
passed color blindness tests and a ScanX (Leaderwear) 
software test that is commonly used to identify suitability for 
X-Ray screening task, and where then recruited to undergo 
16 hours of computer-based X-ray baggage screening 
training developed by collaborator SPI. (Figure 2) “Expert” 
subjects were experienced TSOs with at least 2 years of 
experience provided to the project by the sponsor.  

 

Figure 2.  Screenshot of SPI X-ray screening computer-based training 

software. The software emulates X-ray screening equipment functions, 
including color filter layers.. 

Subjects underwent the following protocol: 

1. Overview of the experiment, introduction to the EEG 

headset and eye-tracker, and informed consent.  

2. 5-minute SPI tutorial followed by 5 minutes of practice 

3. Calibration of eye-tracking device for each subject  

4. QUASAR researchers placed headsets on subjects and 

adjusted sensors to ensure proper signal quality as 

ascertained by impedance monitoring 

5. Perform EEG model calibration tasks  

6. Perform 2 X-ray screening tests where the objective is to 

analyze 100 images and identify threats, if any. The test 

was conducted on SPI’s X-ray scanner emulator. A 3
rd

 

test was performed after a 15-minute break. There was a 

25:75 threat to non-threat ratio in the images. 

7. After each test, headset comfort and task difficulty 

surveys were conducted 

8. At the end of the testing the EEG calibration tasks were 

performed again before taking off headset. 

IV. RESULTS 

1) Performance on X-Ray Screening Task. 

While one Novice subject underperformed compared to the 

others on the test, the other novice subject performed 

comparably to the Expert subjects, both in overall score 

(Figure 3), in response time, by error type, and when 

breaking down questions by image difficulty and threat 

condition, as well as subjective surveys.  

 

Figure 3. Average performance on the X-Ray Screening task by subject. 

2) Cognitive Workload Assessment.  

When examining cognitive workload, however, the 
average workload was significantly higher for the Novice 
group 72.6% (SEM ±0.6) and than for the Experts 33.0% 
(SEM ±0.8) (Student’s T-test p<0.05) for the EEG-based 
gauges, as well as for the pupillometry based ICA where the 
average for the Novice group was 0.41, and 0.33 for Experts. 
Cognitive workload during the calibration tasks was however 
comparable between the two groups.  

 

Figure 4. EEG based Cognitive Workload during X-Ray Task (EEG based 
gauge and Eye-Tracking based ICA) 

3) Relationships between Performance and BBM 

The relationship between brain-based cognitive gauges 
and performance on the X-Ray screening task was examined 
by cross-correlations. First, for each X-Ray screening image 
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in experimental sets 1 and 2, the following features were 
calculated for each subject: 

1. WKL: EEG-based Cognitive Workload gauge output 

averaged across the screening time for each image 

2. ATT: EEG-based Cognitive Attentiveness gauge output 

averaged across the screening time for each image 

3. ICA: Eye-Tracking based Index of Cognitive Activity 

output averaged across the screening time for each image 

4. EXP: Expertise level of the subject examining the image 

5. COR: Correct decision made for the image 

6. ERR: Erroneous decision made for the image 

7. TNR: True Negative Response (correct no threat) 

8. FPR: False Positive Response (incorrect threat) 

9. FNR: False Negative Response (incorrect no threat) 

10. TPR: True Positive Response (correct threat) 

11. DIF: Difficulty level reported for image by SPI experts 

12. DUR: Duration of time subject spent examining image 

The above 12 features were calculated for each of the test 
images and were cross correlated. Figure 5 plots the pairwise 
Pearson’s correlation coefficients for these features, and 
illustrates the relationship between the cognitive gauge 
output and task performance. 

Figure 5. Pearson’s correlation coefficients between cognitive workload 
gauges and performance metrics. Starred squares indicate statistically 

significant correlations. 

First, all three cognitive gauges are significantly 
correlated to each other, with the EEG-based and eye-
tracking-based workload gauges having a 0.35 correlation 
coefficient, and ATT having correlation coefficients of 0.30 
and 0.24 to WKL and ICA respectively. 

Second, all three cognitive gauges are significantly 
correlated with expertise levels. The negative indices 
indicate that lower cognitive workloads are associated with 
higher expertise levels. This means, that overall, during 
screening of X-Ray images, an expert will have a lower 
cognitive workload than a novice. 

Third, the EEG-based cognitive gauges are significantly 
correlated to correct and erroneous decisions. Correct 
decisions are linked with lower mental efforts while incorrect 
decisions are associated with higher mental efforts. 
Specifically, the relationship between cognitive load and 
error is due to True Negative (TNR) decisions requiring less 
mental strain than False Positive (FPR) errors. False Negative 
(FNR) errors are not significantly correlated to any mental 
gauge, but True Positive Responses (TPR) are significantly 
correlated with the EEG-based cognitive Attentiveness 
gauge. 

None of the cognitive gauges are significantly correlated 
to the image difficulty, but both EEG-based and Eye-
Tracking-based workload gauges are significantly correlated 
to the duration of time spent screening an image. 

V. CONCLUSIONS 

These preliminary yet statistically significant correlations 
between cognitive workload measures, performance, and 
expertise level suggest EEG and Eye-Tracking based 
cognitive metrics can be useful in training environments.  
New training paradigms could utilize this information to 
adaptively modify training content with increasing expertise 
levels, thereby maximizing training efficiency. 
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