
  

  

Abstract—Accelerometer data provide useful information 
about subject activity in many different application scenarios.  
For this study, single-accelerometer data were acquired from 
subjects participating in field tests that mimic tasks that 
astronauts might encounter in reduced gravity environments. 
The primary goal of this effort was to apply classification 
algorithms that could identify these tasks based on features 
present in their corresponding accelerometer data, where the 
end goal is to establish methods to unobtrusively gauge subject 
well-being based on sensors that reside in their local 
environment.   In this initial analysis, six different activities that 
involve leg movement are classified. The k-Nearest Neighbors 
(kNN) algorithm was found to be the most effective, with an 
overall classification success rate of 90.8%. 
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I. INTRODUCTION 
Many types of small sensors have emerged rapidly in 

recent years given improvements in MEMS technology. 
Among them, accelerometers have drawn much attention due 
to increases in their accuracy and availability.  In many 
products, accelerometers are bundled with wireless 
transmission features in order to increase their usefulness 
when mounted, e.g., on a person’s body. Previously, 
accelerometer-based analyses have been applied to step 
length estimation [1], gait analysis and fatigue determination 
[2,3], personal dead reckoning navigation systems [4] in 
place of GPS- or compass-based navigation when satellite 
signals are unavailable, such as for a first responder in a 
building [5] or within the context of dangerous missions such 
as military engagements.  

Wireless accelerometers have also been applied for user 
activity determination. Various studies have been conducted 
with different setups, where one or more accelerometers have 
been placed on different parts of body to record acceleration, 
and then these recorded data are processed to extract useful 
information regarding these activities and their identification.  
Such activities range from single part movement, such as 
Kung Fu gestures in the arm [6], to whole body movements 
such as walking, running, and cycling [7-9]. In order to 
relieve the user from the trouble of wearing such sensors 
towards a goal of estimating their daily activities, S. Wang 
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and N. Chen [10] proposed to place these sensors on the 
objects associated with each activity (e.g., a telephone, water 
glass, and pen for identifying the processes of making a phone 
call, drinking, and writing, respectively). However, this 
methodology is still novel and heavily relies on an 
omnipresent sensor network as well as data procession center 
to supply the system.  

While detecting these activities, research groups often 
incorporate multiple accelerometers on major body parts or 
joints. Popular locations include the thigh, arm, hip, and waist, 
since they represent action in the critical parts of the body. 
However, in certain situations, these locations are 
inaccessible or may be compromised. The goal is to minimize 
the accelerometer quantity while achieving good results. 

This paper presents an initial study to classify types of 
field-test activities using single-accelerometer data. 
Information regarding these activities is presented in Section 
II. Data acquisition and feature extraction methods are 
introduced in Section III, along with the algorithms used to 
train the data. Section IV presents the classification results 
and some discussion points. Finally, Section V notes the 
limitations of this approach and presents future work. 

II. BACKGROUND 
Planetary Navigation Field Tests (PNFTs) have been 

designed for an ongoing NASA project to assess subject 
fatigue when performing physical tasks [11,12]. Various 
physiologic sensors are worn by each subject during these 
timed tests, including a heart rate monitor, accelerometer, and 
portable gas exchange system. These data are then studied 
with a goal of correlating task failure with physiologic 
condition. The overall goal is to use these statistical results to 
predict an astronaut’s ability to successfully accomplish such 
tasks, eventually in a reduced gravity environment.  

PNFT activities are designed to emulate potential tasks an 
astronaut might encounter in space or on another planet. The 
six tasks addressed here form a continuous circuit that is run 
repeatedly by a subject until the end of the test. The definition 
of each task follows: 

1. Ladder Climb. Subjects ascend/descend scaffolding. 

2. Agility Cones. Subjects move forward and backward 
through six cones. 

3. Stair Climb. Subjects climb a set of stairs and then 
descend them backwards. 
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4. Horizontal Climb. Subjects climb horizontally along 
a wall using hand and foot grips. 

5. Equipment Lift. Subjects lift two 10 lb and two 20 lb 
equipment boxes from waist- to eye-level and from 
ground- to waist-level, respectively, then lower them 
in reverse order to the starting position. 

6. Step-Entry Maneuver. Subjects move laterally and 
periodically step over ropes and duck under poles to 
simulate stepping over and under a hatch entry. 

The task order and physical layout are illustrated in Fig. 1. 
Each test cycle starts at the ladder climb and continues 
counter-clockwise through all of the other tasks. Each subject 
is required to accomplish all 6 tasks sequentially through the 
cycle, and each experiment contains 20 repeated cycles. 
Critical information such as time duration for each task, heart 
rate, O2 and CO2 concentrations (for metabolic rate 
extraction), and 3-axis acceleration are recorded during each 
experiment.  

In this scenario, acceleration quantitatively mirrors the 
intensity of an activity, so the original goal was to employ 
accelerometers to record body movement for a known 
activity, since these data might at some point indicate fatigue 
and potential failure.  The secondary goal is to then see if 
acceleration data can be used to identify the tasks that these 
subjects accomplish, as this provides a means to automate the 
process of tracking both subject well-being and context.   

Difficulties inherent in recognizing such tasks from one 
another include the fact that all six of these activities share 
similarities in terms of movement patterns. The step-entry 

maneuver, ladder climb, agility cones, and stair climb all 
involve an element of running or lower body movement. All 
activities except for the agility cones involve arm movement. 
Finally, all of these activities are high intensity. Such 
analogies among the activities can pose challenges for the 
classification algorithms. 
 

 
Fig. 1. Planetary navigation field test task cycle. 

 

III. METHODS 

A. Zephyr Health Monitoring System 
A Zephyr BioHarness, a commercial health monitoring 

device [13], was used to record physiologic data for these 
assessments, which involve two test subjects.  These data 
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Fig. 2. Sample 3- axis acceleration data from 4 cycles of movement. 
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include heart rate (via an electrocardiogram (ECG)) and skin 
surface temperature. Additionally, a tri-axial accelerometer is 
embedded inside the device and sends acceleration data at a 
sampling rate of 50 Hz. To achieve optimal heart rate data, the 
BioHarness is worn around the subject’s chest. 
Accelerometer placement on the chest differs from previous 
work, where such a sensor might be mounted, e.g., on a limb 
to reflect precise movement for that part of the body. The 
chest-worn accelerometer is oriented such that the z-axis 
points upward, the x-axis points forward, and the y-axis points 
to the subject’s left. A sample data set that includes 4 rounds 
of activity, with six tasks per round, is depicted in Fig. 2, 
where the first grouping of tasks (  through ) is labeled in 
the upper left portion of each axis.  

B. Single Activity Data Acquisition 
During a normal field test, each task is performed once per 

cycle, and the duration of that task is short – often a couple of 
seconds. In addition, after finishing an activity, the subject is 
required to run for a short distance to the next task station; this 
ambiguous task separation adds an additional burden to the 
classification process. Therefore, new training sets of data for 
each activity were acquired separately, with one person 
performing each task repeatedly for about 1 minute. Each 
piece of the data is clearly labeled by activity and used for 
classification and identification.  

C. Feature Extraction 
Raw training data are pre-processed by extracting several 

features based on a window size of 2 seconds with an overlap 
of 1 second, i.e., 100 samples with an overlap of 50 samples. 
A window size selected to cover the periodicity of an activity 
plus an overlap of 50% between consecutive windows has 
been demonstrated to yield optimal results in previous work 
[14]. Four basic features (mean value, variance, energy, and 
entropy) are extracted for each axis, yielding a total of 12 
features for the 3 accelerometer axes. 

Since all activities involve periodicity, an energy 
calculation is applied to characterize the frequency 
components of each activity. This quantity is represented by 
the normalized sum of frequency components over a window, 
where the frequency components, xi,  are the complex 
coefficients obtained by calculating the Fast Fourier 
Transform (FFT) of the time domain data: 

 
widthwindow

x
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2

 (1) 

Entropy characterizes the consistency in an activity. An 
activity with a high repeated frequency, e.g., the agility cones, 
ends up with low entropy, whereas a task with irregular 
motion and randomness is prone to have higher entropy. 
Entropy helps to differentiate activities with similar energy 
consumption. 
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D. Classification Algorithms 
Three major classification algorithms were used to classify 

these activities:  
• C4.5 Decision Tree 
• k-Nearest Neighbors 
• Support Vector Machine 

These classifications were realized using the WEKA toolkit 
[15]. A 10-fold cross-validation test method was adopted 
when training and validating the classification for each 
algorithm. Specifically, each data set was divided into 10 
parts, where 9 of them were used to train the classifier and the 
remaining unused part was applied to assess the effectiveness 
of the classifier. 

IV. RESULTS AND DISCUSSION 
 

The accuracy for each classification method is listed in 
Table I. All three algorithms exhibit high accuracy, while the 
k-Nearest Neighbors algorithm demonstrates the highest 
recognition rate. 

TABLE I 
ACCURACY OF EACH CLASSIFIER  

C4.5 Decision Tree  89.94% 
k-Nearest Neighbors 90.77% 
Support Vector Machines 86.40% 

 
Even though all activities share similar patterns, they are 

fairly well identified with a single tri-axial accelerometer. 
Table II provides the percentage of correct assessments for 
each activity. Activities with more regular patterns, stable 
periodicity, and no interference between the upper and lower 
body, as the result suggests (such as agility cones, which is 
similar to normal running, and the step–entry maneuver, 
whose major motion is regular jumping), are prone to be 
identified with low ambiguity. Otherwise, those with high 
interplay between arms and legs reveal more irregularity and 
are less likely to be well-classified, such as ladder climbing 
and horizontal climbing. Aside from the fact that it is the one 
task that is different in nature from the other activities (since 
there is no lower body movement at all), the equipment lift is 
the activity identified with the least overall accuracy. Sensor 
placement is arguably the main reason for misjudging this 
activity. The bending down and raising up movement is 
mistaken to be leg movement that is similar to other activities.  
 

TABLE II 
CORRECTNESS OF IDENTIFICATION OF EACH ACTIVITY 

C4.5 kNN SVM Overall 
Cones 96.30% 98.15% 98.15% 97.53% 
Ladder 78.85% 78.85% 94.23% 83.97% 
Lift 82.14% 80.95% 72.02% 78.37% 
Step 98.61% 98.61% 96.53% 97.92% 
Stair 93.96% 94.51% 96.70% 95.05% 
Wall 81.11% 80.00% 32.22% 64.44% 
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Tables III to V display the confusion matrices for the 

different tasks as a function of classification algorithm.  From 
these tables, it can be noted that ladder climbing and stair 
climbing both involve a stepping action and that they are 
confused with each other but not with the other tasks. Most of 
the false classifications for equipment lifting fall into the 
category of ladder climbing, since both activities have no 
forward/backward (x-axis) movement. The same situation 
applies to the horizontal climb. It is largely mis-tagged as 
ladder climbing, since both activities involve no major y-axis 
component, and the x-axis movement in horizontal climbing 
is similar to upper body tilting when the gravitational point 
shifts between the left side and the right side of the body 
during ladder climbing. 
 

TABLE III 
CONFUSION MATRIX FROM C4.5 DECISION TREE  

Classified As 
Activity Cones Ladder Lift Step Stair Wall 
Cones 52 2 0 0 0 0 
Ladder 0 82 10 1 3 8 
Lift 0 9 138 2 11 8 
Step 1 0 0 142 0 1 
Stair 0 7 4 0 171 0 
Wall 0 11 6 0 0 73 

 
TABLE IV 

CONFUSION MATRIX FROM KNN  
Classified As 

Activity Cones Ladder Lift Step Stair Wall 
Cones 53 1 0 0 0 0 
Ladder 0 82 7 2 0 13 

Lift 0 12 136 4 9 7 
Step 0 0 2 142 0 0 
Stair 0 2 3 5 172 0 
Wall 0 8 7 1 2 72 

 
TABLE V 

CONFUSION MATRIX FROM SVM 
Classified As 

Activity Cones Ladder Lift Step Stair Wall 
Cones 53 1 0 0 0 0 
Ladder 0 98 4 0 2 0 

Lift 0 43 121 0 4 0 
Step 0 1 4 139 0 0 
Stair 0 4 2 0 176 0 
Wall 0 60 0 0 1 29 

 

V. CONCLUSION  
In this effort, the investigators applied classification 

algorithms to accelerometer data acquired from a set of six 
field tests to see if the features extracted from these data sets 

were sufficient to allow the activities to be distinguished from 
one another.  Each of the three classification approaches 
demonstrated acceptable overall accuracy, even though 
physical elements of the field tests were quite similar in 
nature (e.g., periodic stepping movements).  These results are 
encouraging, as they imply that accelerometer data may be 
useful to identify individual activities (at least from a pool of 
known possible activities) without requiring additional action 
from the user. In the planetary scenario that drove the choice 
of tasks for this investigation, the use of accelerometer data to 
identify both the type of task as well as the level of fatigue 
experienced by the subject is a promising step forward toward 
the automated assessment of astronaut health.  
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