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Abstract— In order to detect the quasi-stationary states of
the heart within a cardiac cycle from echocardiography data,
we present an algorithm that uses non-linear filtering and
boundary detection. The non-linear filtering algorithm involves
anisotropic diffusion to remove the speckle noise from the data
and to smoothen the homogeneous regions while preserving
the edges. Following this, we perform binary thresholding and
boundary detection, and observe the positional changes in the
region of interest. From a series of echocardiography images,
we derived the regions of cardiac quiescence, which we then
plotted on the electrocardiograph (ECG) R–R interval. It is
observed that the quiescence occurs in the diastolic region of
the ECG signal, but the position and length of quiescence varies
across multiple cardiac cycles for the same individual.

I. INTRODUCTION

Cardiac computed tomography (CT) evaluation of the

coronary arteries is at the cusp of revolutionizing diagnosis

of heart disease. CT evaluation is fast, inexpensive, and

noninvasive and has relatively rare complications compared

with the more invasive and expensive catheter-based coro-

nary angiography. However, CT evaluation of the heart has

a fundamental drawback in the form of temporal resolution.

CT gantry rotation times are of the order of 330ms and slice

acquisition times are about 170ms for current single-source

CT scanners. On the other hand, the heart is a moving target,

which makes acquisition of motion-free images challenging.

There are, however, portions of the cardiac cycle where

the heart is relatively quiescent, and scanning during these

periods may reduce motion artifacts. For example, if the

heart rate is below 70 beats per minute (bpm), then CT

slice acquisition in the diastolic portion of the cardiac cycle

may provide relatively motion-free images of the coronary

arteries, and if the heart rate is greater than 70bpm, then

scanning in the systolic portion of the cycle may be better

[1].

Currently, prediction of cardiac quiescence is based

almost-entirely on electrocardiography (ECG), and CT slice

acquisition is based on a gating signal that is derived from

real-time ECG. ECG is an excellent marker of the instanta-

neous electrical state of the heart; however, it is not a great
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marker of the instantaneous mechanical motion of the heart.

Our hypothesis is that cardiac CT gating can be improved if

the gating signal is based on the true mechanical motion of

the heart rather than the surrogate electrical marker.

In prior work [2], we have shown that ultrasound (US),

which, similar to ECG, can provide real-time evaluation of

the heart, may potentially provide a better signal for gating

since it directly interrogates cardiac mechanical motion. In

that work, we showed that quiescent periods within the

cardiac cycle may vary between individuals even if their heart

rates are similar. Thus ECG gating at fixed interval within the

cardiac cycle may not be optimal using population-derived

averages.

A limitation of the work in [2] was that it was based on

beat-to-beat cross-correlation of one-dimensional (M-mode)

US signals from the left ventricular wall. M-mode can only

resolve motion in one direction at a time and motion in

the orthogonal direction cannot be resolved. In this paper,

estimation of cardiac quiescence is performed by observing

the motion of the inter-ventricular septum in a series of two-

dimensional (B-mode) US images.

The B-mode US image is a two-dimensional depiction of

the echoes plotted as a function of depth. However, speckle

noise is usually associated with this imaging modality, which

can hamper edge detection and image segmentation. The

cardiac quiescence estimation algorithm in this paper per-

forms despeckling of the ultrasound image using a non-linear

filtering technique called anisotropic diffusion (AD), which

also performs contrast enhancement and edge detection.

Using this filtered image, the boundary around the region of

interest (ROI), also referred to as object contour, is obtained

and the center of mass of the ROI is calculated. This center

of mass can be considered to represent the position of the

ROI in that particular frame. This process is repeated over

the entire set of US data and an estimate of the position

of the ROI over multiple frames is thus obtained. We then

compare the motion estimates obtained by this approach with

the simultaneously and synchronously acquired ECG signal.

The rest of this paper is organized as follows: In Section

II, our mathematical techniques for processing the US cine

data are presented. In Section III, our experimental setup

and results of the evaluation of our algorithm based on data

from two human subjects are provided. Finally, Section IV

provides a discussion and the conclusions.
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Fig. 1. Block diagram: cardiac quiescence detection using anisotropic diffusion and boundary detection.

II. METHODS

In this section, we describe the steps involved in the

detection of cardiac quiescence from B-mode US data, as

outlined in Fig. 1.

A. Anisotropic Diffusion

In order to segment the image into a pre-specified ROI and

to perform tracking, we initially use a filtering algorithm

to remove the speckle noise. Speckle noise is a result of

the interference of ultrasound waves while gathering back-

scattered data. Speckle causes distortions in the image that

can seriously hamper the detection of the ROI. In order to be

able to detect the motion from this ultrasound image, we need

to suppress the speckle noise, and this can both enhance the

contrast of the image and enable better edge and boundary

detection of the ROI. There are many linear and non-linear

filtering techniques including averaging filters, Wiener filters,

Lee filter, Frost filter and anisotropic diffusion based filters

[3] that have been used to remove speckle noise in US.

While the Wiener, Lee and Frost filters remove speckle

noise, the despeckled images lose important edge details due

to smoothing, and these edge details are important in the

detection of ROI. In this algorithm we use the anisotropic

diffusion (AD) filter originally proposed in [4] which was

modified for medical images in [5], [6]. We use the AD filter

since it performs smoothing based on the gradient of the

image intensity, and provides an edge enhanced and contrast

enhanced image while removing the speckle noise.

The following mathematical framework for the AD algo-

rithm follows the approach presented by Gerig et al. in [5].

For a vector x̄ which represents the spatial co-ordinates and

t, the process ordering parameter, the process of smoothing

via diffusion is given by:

∂

∂ t
u(x̄,t) = div(c(x̄,t))∇u(x̄,t)) (1)

where c(x̄,t) is the diffusion function that depends on the

magnitude of the gradient of the image intensity I(x̄,t) =
u(x̄,t). The diffusion function used in this algorithm is

obtained as a function of the image intensity and is given

by:

c(x̄,t) =

(

1 +

(

|∇I(x̄,t)|

κ

)

2

)−1

(2)

This diffusion function is a monotonically decreasing func-

tion which diffuses within the regions leaving the boundaries

(high gradient regions) unaffected. The diffusion process

continues until the gradient reaches a large value, i.e. dis-

continuity occurs. The parameter κ depends on the noise

level and the edge strength.

The two-dimensional implementation of the AD filtering

(x̄ = [x y]) for an image with intensity I(x̄,t) is given by:

∂

∂ t
I(x̄,t) = div[c(x̄,t)∗∇I(x̄,t)]

= ∂

∂x

[

c(x̄,t)∗ ∂

∂x
I(x̄,t)

]

+ ∂

∂y

[

c(x̄,t)∗ ∂

∂y
I(x̄,t)

]

This diffusion is calculated in the neighboring pixel direc-

tions, and the updated pixel intensity is given by:

I(x̄,t + ∆t) = I(x̄,t)+ ∆t ∗
∂

∂ t
I(x̄,t) (3)

where ∆t is the integration constant and is used to approx-

imate the stability. Since this algorithm does not have a

specific convergence, that is, the smoothing continues to

occur up to infinite time, a constraint on the number of

iterations is imposed. The number of iterations depends on

the application and the amount of smoothing desired.

This process of AD blurs smaller discontinuities and

sharpens the edges, which is useful in this despeckling

process, while retaining the discontinuities and not affecting

their positions. We refer to this anisotropic diffused image

as IAD(x̄,t) or simply IAD.

B. Thresholding

Following the removal of the speckle noise, which also

enhances the contrast of the image while enabling edge

detection, we perform a hard thresholding on the image IAD

in order to be able to better identify the contour of the ROI.

This is a binary thresholding process with the value for the

threshold obtained by the separation between the hyperechoic

(higher pixel intensity) and the hypoechoic region (lower

pixel intensity) of the histogram despeckled image. Due to

AD filtering, there is enhancement of contrast, thus widening

the separation between the hypoechoic and the hyperechoic

regions in the histogram. The pixel values greater than the

threshold are set to one (white), and the ones below the

threshold are set to zero (black)

C. Boundary Detection

On the binary image obtained after thresholding, we

perform the boundary detection using the Moore neighbor

algorithm modified by Jacob’s stopping criteria [7]. The

boundary detection algorithm delineates the contour of the

ROI and the points within the contour. Using these points,

we find the center of the mass (cxi
,cyi

), for the ROI for frame

i.

The above process of finding the ROI, corresponding to

the part of the heart whose motion we are tracking, and the

center of of mass for this ROI, is repeated over the entire

set of frames. This results in the vector C that provides the

position of the ROI for each of the frames from which the

quiescence is computed.
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(a) Raw US Image (one frame) with the intra-ventricular
septum (IVS) as the ROI, left ventricle (LV) and right
ventricle (RV)

(b) Despeckled US image after performing AD.

(c) Binary thresholded US image. (d) Raw US image with the boundaries. The center of mass
for the IVS is shown by the blue point.

Fig. 2. Illustration of detection of center of mass of the septum for a frame of B-mode echocardiograph data.

D. Motion

The position vector C = [C1;C2; · · · ;CN ], where Ci =
(cxi

,cyi
) and N is the number of frames, is used to compute

the motion of the ROI over the entire set of frames. In

order to observe quiescence, i.e. the region of no motion, the

position of two consecutive frames needs to be compared.

In order to achieve this, we consider the first difference

between the x and the y positions of consecutive frames.

i.e., ∆Ci = Ci+1 −Ci

We then observe the regions where the first difference for

both the x and y position is close to zero. The longer the

stretch of zeros in the first difference, the longer the region

of quiescence.

III. EXPERIMENTAL SETUP AND RESULTS

The experimental data is obtained using a SonixTOUCH

Research ultrasound machine (Ultrasonix, Vancouver, BC,

Canada), and the data consists of the B-mode echocardiog-

raphy images and ECG data for two female subjects of ages

23 and 24 (subject A and B, respectively), with no known

cardiac conditions. Approval for the study was obtained from

the Institutional Review Board (IRB) at Emory University.

The data acquisition rate of the B-mode echocardiography

data is 30 frames/sec and that for the ECG data is 200 sam-

ples/sec. The size of a single echocardiography data frame is

640 × 480. The algorithm was evaluated on MATLAB v7.10

(MathWorks Inc., Natick, MA).

To evaluate the cardiac quiescence algorithm described

in Section II, we consider B-mode echocardiography data

and ECG data. For the AD filtering, the gradient modulus

threshold parameter κ is set to 30 and the number of

iterations for smoothing was set to 10. These values for κ

and the number of iterations were set upon observing the

gradient of the US image and the desired despeckling. It

was observed that 10 iterations were sufficient to remove

the speckle noise and enhance the contrast. For the hard

thresholding process following the AD filtering, the threshold

was determined from the histogram and was set to 50. Note

that this threshold can vary with the brightness and the

contrast of image acquired and following the AD filtering

process.

In Fig. 2, the algorithm steps are illustrated for a B-mode

echocardiography image of the subject, and we desire to

detect the center of mass of the septum. Note that in this case,

the boundary detection is performed over the entire image.

It suffices if it is performed over a roughly estimated area

containing the region of interest rather than the entire image.

Fig. 2(a) shows the raw image upon which AD filtering was

performed to obtain the image shown in Fig. 2(b). Fig. 2(c)

shows the binary thresholded image after AD filtering upon

which the boundary detection is performed, and the detected

boundaries are shown on the raw ultrasound image in Fig.

2(d) along with the center of mass of the septum.

Upon obtaining the centers of mass C for the septum for

the entire set of frames, we find the first difference ∆C from
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C. This first difference can also be interpreted as the velocity

in the x and y directions. We then observe the regions of

low (close to zero) first difference of both x and y positions,

which implies that there has been very little or no motion

(first difference between consecutive frame less than 0.2cm)

with respect to the consecutive frames of B-mode. The region

of quiescence is then drawn over the ECG signal that is

obtained at the same time as the B-mode data.

From the aforementioned data sets, we initially show

results for subject B for an average heart rate of 65 bpm.

The first difference of the x and y position of the septum

∆C = [∆x ∆y], the ECG signal and the region of quiescence

as obtained from analyzing the B-mode data is shown for a

segment of the data (three cardiac cycles) in Fig. 3.
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Fig. 3. Plot of first difference of x and y positions (∆x and ∆y) and the
ECG signal with the cardiac quiescence shown by red bars.

Note that the quiescence is shown by red bars and is

observed over the diastolic portion of the cardiac cycle. For

the three cardiac cycles shown (of durations 0.93s, 0.91s,

and 0.8s), we see that the quiescence begins at a different

point in each cardiac cycle and the quiescence is of different

durations. For example, a longer duration of quiescence is

observed for the second cardiac cycle, while the quiescence

in the third cardiac cycle occurs at a later point when

compared to the other two cycles.

Thus, we see that the region of quiescence may vary with

the length of the cardiac cycle for the same patient. In order

to further investigate this finding, we consider 10 cardiac

cycles of different lengths drawn from subject A and B, both

with an average heart rate 55. For each of the cardiac cycles,

we consider the region of quiescence in the diastolic region,

and obtain the quiescence start and end points as a percentage

with respect to the duration of the cardiac cycle. This is

shown in Fig. 4 where the normalized quiescence start and

end points are plotted for each of the cardiac cycles. Note

that the start of quiescence varies between 60–80% of the

cardiac cycle length and the quiescence duration can extend

between 10–35% of the cardiac cycle length.

IV. DISCUSSION AND CONCLUSION

Using AD, binary thresholding and boundary detection,

we were able to identify the motion of the septum from

B-mode US data for gating purposes. The identification of

the region of quiescence with reference to the ECG signal

acquired simultaneously showcased the following findings.
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Fig. 4. Cardiac quiescence start and end points for Subject A and B are
plotted for 10 cardiac cycles as a percentage of the cardiac cycle length
against the cardiac cycle duration.

For heart rates in the range 55–65bpm, the quiescent region

is observed in the diastolic potion of the cardiac cycle.

However, this cardiac quiescence state is not deterministic,

i.e. its exact position and duration on a beat-to-beat basis

cannot be determined given the cardiac cycle duration or

the heart rate. The quiescence position and duration is also

shown to vary within the same individual for different cardiac

cycle duration and also across two different individuals.

Future work will focus on observing the quiescence over

a larger range of heart rates for the same subject and deter-

mining if there is any quiescence detected by this algorithm

in the the systolic region of the cardiac cycle for higher heart

rates. In addition, the correlation between the motion from

different ROI for the same set of frames will be computed, to

study if quiescence occurs simultaneously or with a delay, on

all parts of the left ventricle and eventually the other regions

of the heart. Additionally, we would like to retain speckle

noise and observe if tracking this speckle noise enables better

motion analysis and quiescence prediction.

Ultimately we would like to develop algorithms using

a non-linear filtering approach to model cardiac motion

and predict quiescence. This will permit optimal gating for

cardiac CT examinations.
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