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Abstract— Here, we introduce a novel approach to the EEG 

inverse problem based on the assumption that principal cortical 

sources of multi-channel EEG recordings may be assumed to be 

spatially sparse, compact, and smooth (SCS). To enforce these 

characteristics of solutions to the EEG inverse problem, we 

propose a correlation-variance model which factors a cortical 

source space covariance matrix into the multiplication of a pre-

given correlation coefficient matrix and the square root of the 

diagonal variance matrix learned from the data under a 

Bayesian learning framework. We tested the SCS method using 

simulated EEG data with various SNR and applied it to a real 

ECOG data set. We compare the results of SCS to those of an 

established SBL algorithm.  

I. INTRODUCTION 

Electroencephalography(EEG) and its magnetic equivalent, 

magnetoencephalography (MEG) measure voltage potential 

or electromagnetic field generated by current sources located 

within the brain using multiple sensors located on or near the 

scalp. Compared to the long-time (more than 5-s) delay 

between the firing of neurons and the peak of BOLD signal 

from functional magnetic resonance imaging (fMRI), EEG 

and MEG have much higher temporal resolution. However, 

accurately determining the spatial locations of the current 

sources is extremely difficult since the mapping from source 

activity configuration to sensor measurement is many to one, 

and hence underdetermined. Thus EEG source localization is 

an ill-posed inverse problem. 

To remedy the ill-posed nature of the EEG source 

localization inverse problem, two types of solution 

conditions are commonly enforced or encouraged: (a) 

smoothness, and (b) sparsity.  Minimum Norm Estimates 

(MNE), LORETA, and other linear regulation-based 

methods encourage source smoothness ([1],[2],[3]), while 

Sparse Bayesian Learning (SBL) algorithms encourage 

source sparsity ([4],[5]).  Attempting to enforce these two 

conditions drives solutions in opposite directions: smoothing 

tends to keep a large portion of the current dipoles in the 

source space “active,” while sparse learning reduces the 

activity of most current dipoles to zero, tending to produce a 

sparse pattern of isolated delta-function like dipole 

activations.  However, in reality, neuronal networks of the 

brain, and specifically within the cortex, exhibit a quasi  
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‘small world’ property in which neurons synchronize mainly 

with their immediate neighbors through short-distance  

connections, with relatively few long-range connections that 

are capable of supporting long-distance field synchrony. 

Therefore, the current sources contributing to EEG signals 

should be both spatially compact and locally smooth, 

typically taking the form of a compact, but non-point like, 

cortical source patch comprised of parallel dipolar 

activations. 

Highly overlapping (linearly mixed) far-field scalp 

projections of spatially distinct, locally synchronous cortical 

field activities can be separated from recorded EEG scalp 

data by independent component analysis (ICA) [6].  In 

practice, ICA returns component source processes whose 

projections to the scalp are highly compatible with the 

synchronous or near-synchronous projection of a single 

compact cortical patch [7]. Further, the more efficient the 

ICA approach, the more such ‘dipolar’ sources result from 

blind source separation of EEG data [8].  

II. BAYESIAN MODELING USING GENERAL GAUSSIAN SCALE 

MATRIX AND ARBITRARY COVARIANCE MATRIX 

The EEG/MEG source localization problem is to solve the 

under-determined linear inverse problem  

                                                               (1) 

Eq. (1) models the projection of a source through EEG 

forward head model at a single time point. Its terms consist 

of a recorded data vector (at m channels) p, a dipolar m n  

gain matrix G (the ‘lead field matrix’ relating n dipolar 

source strengths to the m recorded scalp potentials, n » m), a 

vector of dipole source strengths d, plus a noise vector n. 

Because the number of sensors is much less than the number 

of dipoles, there are an infinite number of possible values of 

d that satisfy (1), even when the noise n is zero. Thus, prior 

knowledge about the nature of the sources is essential for 

finding a unique and useful solution of the inverse problem. 

In a Bayesian framework, as formalized in (2), such 

knowledge is embedded in the prior distribution P(d).  

                                      (2) 

In the case of many approaches, such as minimum l2-norm 

approaches, minimum current estimation (MCE), 

SLORETA, etc., it is often assumed that both the dipole 

strength vector d and the noise vector n are normally 

distributed with zero mean and known covariance matrices 

Σd and Σn . Alternative, sparsity-inducing Bayesian methods 

learn the form of P(d) from the observed data by updating a 

set of flexible hyperparameters γ.  A specific formalization 

of this approach may be presented in the generalized 

framework [3]: 
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                       (3) 

                                                           (4)                                          

The noise covariance matrix Σn can be estimated from the 

data or may be fixed based on prior knowledge. Here, for 

simplicity we assumed that Σn is diagonal, with Σn(i,i) =εi
2
 

providing a prior estimate of noise variance at the i-th 

channel. In (4), is a vector of dγ nonnegative 

hyperparameters. The appropriate covariance ∑d can be 

estimated by modifying γ, whose components control the 

relative contribution of each covariance basis Ci. The proper 

hyperparameter  can be estimated by hyperparameter MAP 

estimation (γ-MAP) [3] which maximizes hyperparameter 

likelihood P(p|γ). This is equivalent to minimizing the cost 

function 

                                       (5) 

where 

Σp=GΣdGT+Σn                                                                      (6) 

After the hyperparameter γ is estimated, yielding the 

estimated covariance matrix  a MAP point estimate of d 

can be computed 

                                        (7)
 

with 

                                                               (8) 

The choice of covariance set  is essential 

to the solution. A single-component assumption that Σd is an 

identity matrix leads to a weighted minimum l2 solution. 

More interesting covariance terms include the prior 

information on the scales and locations of the source 

activities using a mixture of Gaussian kernels of varying 

scales and locations, which usually leads to a huge C (on a 

side, number of dipoles times number of scales). Since the 

strength of source activity can be considered spatially 

continuous, representing the source distribution by multiple 

Gaussian kernels is insufficient and inefficient. In addition, 

the choice of scale is usually arbitrarily, although it may 

significant effect the final solution.  Furthermore, the 

covariance basis of Ci is usually diagonal, which ignores the 

correlation between the dipole currents. 

III. AN ALTERNATIVE CORRELATION MODEL-THE SCS 

ALGORITHM 

Instead of modeling the sources as a mixture of multiple 

Gaussian kernels, here we propose a correlation-variance 

model that exploits the fact that one can factor any full-rank 

covariance matrix into the multiplication of a correlation 

matrix and the square roots of the diagonal variance matrix 

as follows: 

,                                          (9) 

The matrix element R(i,j) is  the correlation coefficient 

between the strengths of the ith and jth dipoles, whose value 

assumed to be given by a prior estimate.  Assuming a local 

tendency toward synchronization of neural activities at 

nearby dipoles in the source space, this correlation may be 

assumed to be exponentially decreasing as the squared 

distance between dipole locations. A direct definition of the 

correlation matrix could be 

Ri,j=exp(-a ||r(i)-r(j)||),                     (10) 

where r(i) denotes the location of the ith dipole and ||r(i)-r(j)|| 

is the the Euclidean distance between dipole i and dipole j. 

However, to guarantee the positive definiteness of the 

correlation coefficient matrix R, instead of using the 

definition in (10) we introduce another matrix H with the 

same dimension of R such that  

  R = HH
T
 

Here, we assume the that the components of H are given by 

H(i,j)=ci (1+exp( a ||r(i) - r(j)|| - b ))
-1
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with 

  (12) 

The parameter b is related to the distance within which the 

correlation coefficient remains at a relatively high level; a is 

related to the decay rate of the correlation coefficient beyond 

that distance; ci is a scaling factor that makes R(i,i)=1. The 

values of a and b can either be predefined or learned from 

the data. After setting proper values for a and b, most entries 

of H will be close to zero, i.e. H will be a sparse matrix. 

Therefore, the heavy computation load due to the high 

dimension of H is greatly reduced. In fact, iteration speed of 

SCS is faster than SBL. 

The major thrust of the Sparse Compact Smooth (SCS) 

algorithm is to learn from the data the variance of the dipole 

sources  and , the noise 

variance under the γ-MAP framework: 

                                   (13) 

with  

                                   (14) 

where  is defined as in (6) 

IV. THE OPTIMIZATION OF VARIANCE 

We implement the Sparse Compact Smooth (SCS) algorithm 

by using an adaptive gradient approach to updating the a 

posteriori estimate of σi and εi. This is a distinct difference 

from the way the EM algorithm is used by SBL-based 

approaches. Here, it avoids the computational difficulty due 

to the non-diagonal structure of Σd. 

It is easy to prove that the point estimate of d in (7) is 

invariant to multiplication of (σ, ε) by a positive scalar (i.e., 

the point estimate of d is unchanged after σ and ε are both 

multiplied by the same arbitrary positive factor).  However, 

the cost function in (14) does depend on such a scalar 

multiplication of (σ,ε) Exploiting this fact, given σ and ε, we  

find the factor k that minimizes the cost function L(kσ,kε).  

                                                         

 p
T

p/k+log(|Σp|)k
m
)  
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 p
T

p/k+log(|Σp|)+mlog(k)               (15) 

Eq. (15) can be computed analytically, 

                 (16)  

L(k
*
σ,k

*
ε) = m+log(|Σp|)+mlog(p

T
p)-mlog(m)         (17) 

Equation (17) is determined by σ and ε and is invariant to a 

multiplication of (σ, ε) by k (i.e., (17)) is constant in value 

on the ray through the point (σ, ε). Therefore, the cost 

function L(k, ε) in (14)  can be replaced by  

L
*
(σ,ε) = log(|Σp|)+mlog(p

T
p)                                (18) 

Using (18) as the cost function to be optimized is much more 

efficient than (14), since a search along the ray through each 

point (σ, ε ) is avoided.  (Effectively we are always at the 

optimal location on each ray, so the optimization is 

essentially done over the set of rays.) 

To guarantee that the values of σi and εj are positive, we take 

σi, εj to be the exponential of real numbers φi and ηj 

respectively. The optimization is now performed on the 

vectors φ and η, φ [φ1,…,φn]
T
, η [η1,…,ηm]

T
. 

                    (19)  

using 

exp(φ) = [exp(φ1),…,exp(φn)]
T
,  

exp(η)= [exp(η1),…,exp(ηm)]
T
,                                    (20) 

The gradient of Eq.(19) is  

 

             (21) 

with 

,            (22) 

Where  

gi is the i-th column vector of G, hi is the i-th row vector of 
H 

defined in (11) 

,                                     (23)  

Here δ(i) is a m×1 vector such that  δ(i) [i]=1,  

and other elements are zero. The dimensional scaling 

invariant property of (16) defined in (σ,ε) is now replaced by 

the shift-invariant property with respect to ( ), that is  

L
*
(exp(φ),exp(η))=L

*
(exp(φ+c),exp(η+c)) 

                  (24) 

To speed up the convergence, we further constrain (φ,η) to 

the hyperplane V, 

V={ =0 }          (25) 

The gradient of L
*
 projected onto the hyperplane V is 

                                   (26)    

With 1  [1,…1],  1  R
m+n 

. We adopt a Steepest Descent 

with Adaptive Stepsize (SDAS) [9] algorithm to update 
 

           (27) 

               (28) 

V. EVALUATION OF THE QUALITY OF THE SOLUTION 

Since in the most cases, the actual source activities are not 

known, and neither are the ‘true” models of the source 

activities, minimizing the cost function in (14) alone cannot 

guarantee a ‘true’ solution. In addition, because of the 

different model bases, solutions from different inverse 

algorithms may differ. Therefore, aspects of the solutions 

with physiological meaning independent of the models are 

particular useful for comparing different algorithms and to 

avoid overlearning. Here disf is of particular interest, where 

  /dmax
2
                                                  (29) 

With                                    

  ||r(i),r(j)||,                                     (30) 

dmax is the largest element of vector 

abs(                                            (31) 

Here disf represents the spatial diffusion of the brain activity. 

A useful inverse solution for a maximally independent 

source should have low disf.  

VI. SIMULATION AND RESULTS 

A. Simulation results 

As an initial test of the performance of SCS, we simulated 

EEG data using a realistic source space incorporating 78,048 

current dipole elements oriented perpendicular to a cortical 

surface extracted from a human MR head image. A gain (or 

‘lead field’) matrix of source projections to 346 simulated 

scalp channels was computed using BEM modeling tools in 

the NFT toolbox [10]. To provide a first test, a pair of 

gaussian-tapered source-space dipole patches were selected 

to simulate an EEG source. No noise was added to this 

simulation. We compared the result of applying SCS with 

that of the SBL method of Wipf and colleagues [3]. The 

simulated source is depicted in Fig 1 (left panel). The source 

distributions reconstructed from the source scalp projection 

by SBL and SCS are shown in the center and right panels, 

respectively. SBL gave a more scattered (though also sparse) 

solution, while SCS converged to a maximally compact and 

smooth solution highly similar to the simulated source.  

  To test the robustness of the algorithm in the presence of 

noise, we simulated spatially correlated noise by projecting 

white noise in the source space through the lead field matrix 

and adding the result to the projected simulated source. 

SNRs used in the simulation were 5 dB and 10 dB. SCS 

again gave a more compact solution in the 5 dB SNR case. 
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         (a)                  (b)                     (c) 

Fig.1. (a) The EEG source simulation here consisted of two gaussian-

tapered patches, a superficial patch on the parietal gyrus and a deeper patch 

near the longitudinal fissure. Here color is scaled by dipole strength, red 

representing high strength and green low strength (blue=0). (b) The solution 

found using SBL and (c) by the proposed SCS algorithm 

 

     
         (a)              (b)                 (c)             (d)                 (e) 

Fig.1. (a) The simulated EEG source consisted of one gaussian-tapered 

patch. Solutions found using SBL (b,c) and SCS(d,e) with 10 and 5dB SNR 

B.  Application to Intracranial EEG Data 

Sixteen minutes of 78-channel intracranial EEG data 

including two brief ictal (seizure) periods recorded by 

subdural electrodes from an epilepsy patient in Mayo Clinic 

were used in this study. 

 We applied a recently developed Adaptive Mixture 

Independent Component Analysis (AMICA) to the data 

using 5 models, which allowed 

[11]

≤

      
      (a)               (b)            (c)                (d)               (e)                (f) 

 Fig.2. (a)-(c) SBL inverse solutions at steps 1, 15, and 30. (d)-(f) SCS 

inverse solutions at steps 1, 15, and 30. Here, color represents dipole 

strength, red representing high positive strength and blue, high negative 

strength (green=0). 

 

 

 
                      (a)                                             (b) 

Fig.3.(a) Mean disf at 30 iterations of SCS (black) and SBL (red) source 

inversion. (b) Mean normalized residual variance at each SCS (black) and 

SBL (red) iteration. 

To further investigate the consistency of SCS and SBL 

inverse solutions, we calculated the distance between the 

voxel dipoles with highest strength in each solution. Fig. 4 

shows that the mean distance between the centers of the SCS 

and SBL inverse solutions was less than 5 mm.  

 
Fig.4. Mean distance between dipoles with highest strength in the SCS and 

SBL solutions at each iteration. 
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