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Abstract— MEG/EEG brain imaging has become an im-
portant tool in neuroimaging. Current techniques based in
Bayesian approaches require an a-priori definition of patch
locations on the cortical manifold. Too many patches results in
a complex optimisation problem, too few an under sampling of
the solution space. In this work random locations of the possible
active regions of the brain are proposed to iteratively arrive at a
solution. We use Bayesian model averaging to combine different
possible solutions. The proposed methodology was tested with
synthetic MEG datasets reducing the localisation error of the
approaches based on fixed locations. Real data from a visual
attention study was used for validation.

I. INTRODUCTION

The reconstruction of three dimensional images of the

brain activity based on MEG/EEG data has been for almost

20 years one of the most powerful tools in neuroimaging.

Current algorithms based on the Bayesian framework have

improved the solution of those static and deterministic ap-

proaches used in the 90’s. The main idea of the Bayesian

framework is that if the MEG/EEG inverse problem is ill-

posed, i.e. there are infinite solutions for a single dataset;

it is not possible to perfectly reconstruct the neural activity,

but at least a probability distribution with a given degree of

certainty can be provided.

Nowadays one of the most widely used brain imaging

algorithms is the Multiple Sparse Priors (MSP) [1]. Its main

characteristic is the use of a set of possible focal active

patches of cortex as prior information to reconstruct the

brain activity (sparse priors). These patches are weighted

in order to determine how much information they provide

to the final reconstruction, this is achieved with an iterative

process called Restricted Maximum Likelihood, using the

negative variational Free energy as cost function [2].

The default MSP algorithm uses a fixed set of patches

distributed over the cortex, ideally these patches should

cover the entire cortical surface, but this would be at the

expense of prohibitively large computational load or simply

too sensitive to the large number of sources for providing

a reliable solution. This sparse sampling means that focal

sources located far from patch centres will be inaccurately

reconstructed.

In this work we introduce an improvement to reduce the

localisation error caused by the fixed and sparsely located of
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patches, by implementing a random iterative generation of

patches, solving the inverse problem several times and then

averaging all the solutions with Bayesian Model Averaging

(BMA) [3].

The BMA averages the solution of several models based

on their relative probability as approximated using Free

energy, providing robustness to the solution that cannot be

obtained just taking the average, or the most probable model.

Given that each model (source reconstruction with a random

location of patches) has a Free energy associated, the BMA

is easy to implement and computationally feasible. Previous

work has demonstrated the effectiveness of BMA in the MEG

context [3], [4].

This manuscript proceeds as follows. In Section II the

MEG/EEG brain imaging is presented as the Bayesian so-

lution of an inverse problem. Then the MSP algorithm is

explained and the random generation of patches is intro-

duced, this section finishes with an explanation of BMA

and its implementation. In Section III simulation results with

noisy synthetic MEG data are presented, these datasets were

generated using realistic head models computed with the

SPM8 software package (http://www.fil.ion.ucl.ac.uk/spm).

In Section IV the proposed methodology is validated with

real MEG data; visual cortex activity is reconstructed using

the proposed framework. Finally the results are discussed.

II. THEORY

The estimation of cortical current flow from external elec-

tromagnetic measurements in MEG/EEG is known as the in-

verse problem. If one makes the assumption that current flow

is due mainly to pyramidal neurons orientated perpendicular

to the cortical surface the problem is simplified somewhat.

The cortex is then populated with a grid of thousands of

possible sources or current dipoles to characterise the neural

activity. The measured data Y can then be expressed as

Y = LJ + ǫ (1)

Here, the propagation model of the head L relates a set

J ∈ ℜNd×Nn of Nd current dipoles with the potentials

Y ∈ ℜNc×Nn acquired with Nc sensors for Nn time samples.

Sensor noise and uncertainty on the propagation model are

represented by zero mean Gaussian noise ǫ with covariance:

cov(ǫ) = Σǫ. The image of brain activity is generated by

finding magnitudes of the current dipoles Ĵ that best fits the

data.

In the linear model of eq. (1) the lead field matrix L

(propagation model) is non invertible because the dipoles

outnumber the sensors (Nc ≪ Nd), then the reconstruction
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of the neural source activity Ĵ cannot be directly recovered.

This problem can be solved using the Bayesian framework

by assuming a priori that J is a zero mean Gaussian process

with covariance cov(J) = Q. The prior probability of

the source activity p(J), given by the previous knowledge

of the behaviour of the brain; is corrected for fitting the

data within the likelihood: p(Y |J), allowing to estimate the

source activity distribution using the Bayes’ theorem:

p(J |Y ) =
p(Y |J)p(J)

p(Y )
(2)

The estimated magnitude of the current dipoles is recovered

applying the expectation operator: Ĵ = E[p(J |Y )]. Initially

the evidence p(Y ) is considered constant given that the

dataset is fixed, but it will be introduced later in this

manuscript to perform model selection.

The solution of eq. (2) is:

Ĵ = QLT (Σǫ + LQLT )−1Y (3)

which is obtained with the argument that minimizes the

gradient of eq. (2) with respect to the parameters J (See

[5, Appendix] for four different ways to derive it). Finally,

the posterior source covariance is given by:

cov(Ĵ) = ΣJ = Q−QLT (Σǫ + LQLT )−1LQ (4)

In absence of information about the sensor noise, it is

considered uniformly distributed and identically independent:

Σǫ = λ0INc
, with INc

∈ ℜNc×Nc an identity matrix, and

λ0 the sensor noise variance. This result provides enough

information to solve the inverse problem under Gaussian

assumptions for a known prior source covariance matrix Q

(See [6] for a discussion about assuming the MEG/EEG

inverse problem as a Gaussian process).

A. Multiple Sparse Priors

The main characteristic of the Bayesian approach is the

use of Empirical Bayes to form the source covariance

matrix Q with a set of fixed covariance components C =
{C1, . . . , CNq

} [7]:

Q =

Nq∑

i=1

eλiCi (5)

Each of these components Ci is formed by a patch that

represents a focal region of neural activity. In [8] a Green’s

function based on a graph Laplacian was proposed for

generating the set of components. This forms a compact

set of bell shaped patches of finite cortical extent. The

estimation of source activity consists on weighting these

hyperparameters λ = {λ1, . . . , λNq
} for giving priority to

those patches located in active regions.

1) Optimisation process: The optimisation of hyperpa-

rameters λ is performed with a non-linear search algorithm

called Restricted Maximum Likelihood (ReML), that follows

the gradient and curvature of the Free energy with respect to

the hyperparameters [1]. The Free energy approximates the

log of the model evidence F ≈ log p(Y ), when the source

estimate Ĵ approximates the truth.

For a given combination of hyperparameters the Free

energy is expressed as [2]:

F = −
Nc

2
trace

(
ΣY

Σ

)
−

Nc

2
log |Σ| −

Nn

2
ln 2π

+
1

2
(µ− ν)TΠ(µ− ν) +

1

2
log |ΣλΠ| (6)

where | · | is the matrix determinant operator, ΣY = 1

Nc
Y Y T

is the sample covariance matrix, Σ = Σǫ + LQLT is the

model based sample covariance matrix, and the prior and

approximate densities of the hyperparameters are consid-

ered as Gaussian distributed: p(λ) = N (λ; ν,Π−1), and

q(λ) = N (λ;µ,Σλ) respectively. The optimal combination

of hyperparameters is achieved for the maximum Free energy

value: λ̂ = argmaxλ F , which is where the free energy is

approximately equal to the log evidence.

2) Random generation of patches: Given that the pos-

terior is Gaussian, the optimisation with ReML guarantees

convergence. At this point we make two assumptions: First,

those patches near to a true (but missing) source will have

higher hyperparameter values. Second, a MSP reconstruction

based on a set of patches that include the true source location,

will have higher Free energy than a reconstruction which

does not.

The default MSP generation of patches is performed as

follows: Initially a Green’s function QG ∈ ℜNd×Nd is

generated for all the Nd available dipoles. Then a set of

Nq < Nd dipoles are selected guaranteeing that they are

distributed over the entire cortical surface. Finally, each

diagonal matrix Ci is formed with the column of QG that

corresponds to one of the Nq dipoles previously selected.

The proposed method consists in modifying the way that

the set of Nq dipoles is selected, by choosing randomly

the location of the patches and performing several recon-

structions for guaranteeing that the true source location is

included. Finally, a BMA is performed for averaging all

solutions based on their Free energy in order to obtain robust

neural source estimation. In the following section the method

will be explained step by step.

B. Bayesian Model Averaging

One advantage of using ReML is that each source recon-

struction is associated to a Free energy value, i.e. several

reconstructions may be compared and the one with higher

Free energy will be the most likely, because it is the most

approximated to the evidence p(Y ). However, when several

reconstructions have similar Free energy values selecting

just one may not be the best option; besides that, averaging

them based on their own probability adds robustness to the

solution.

Let define B ∈ ℜNb×1 as a set of Nb source reconstruc-

tions, each with its own estimation Ĵi computed with eq. (3),

covariance (ΣJ)i computed with eq. (4), and Free energy

Fi obtained in the ReML obtimisation, for i = 1, . . . , Nb.

This forms the probability distributions of obtaining the true

source estimates with a given model Bi: p(J |Y,Bi). The
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BMA provides a robust average of these Bi models based

on their own probability:

p(J |Y ) =

Nb∑

i=1

p(J |Y,Bi)p(Bi|Y ) (7)

where p(Bi|Y ) is the probability of the model being true,

fitted with the dataset Y . But given that Y is the same for

all Nb models, this probability can be indirectly computed

with:

p(Bi|Y ) ≈ exp(Fi − F ) (8)

with F the mean Free energy over the Nb models, and Fi

the free energy of the i-th model. The posterior probability

distribution p(B|Y ) must be normalised for guaranteeing that

the total probability is 1.

The following algorithm is used to provide an estimate of

Ĵ , performed over T = 10000 iterations and Nb = 1000
models:

a) Perform Nb solutions for different randomly located

patches and generate p(B|Y ) with their Free energy values

for t=1,. . . ,T do

- b) Pick a solution from its posterior probability

distribution: Bk ∼ p(B|Y )
- c) For the solution Bk obtain the estimated values Ĵk
and their posterior covariance (ΣJ)k
- d) Obtain a normal random variable with mean Ĵk and

covariance (ΣJ)k: J̃t ∼ N (J̃t|Ĵk, (ΣJ)k). In practice,

for computational efficiency and storage limitations only

the main diagonal of each (ΣJ)k is computed in eq. (4)

end for

- Obtain the mean of the random variables: Ĵ =
∑

t J̃t

Step (a) comprises Nb solutions of the inverse problem

each with a random set of patches; this step is the only

one computationally intensive and must be optimised in

future works (each inversion takes around 30 seconds in a

desktop computer). The BMA steps are computationally very

efficient, on a desktop computer it takes less than one minute.

III. SIMULATION RESULTS

Several simulations with different number of sources were

performed to test the approach. For each test a single trial

dataset of Nn = 161 samples over Nc = 274 MEG sensors

was generated by projecting a known neural source distri-

bution into sensor space. These neural sources consisted on

pure sinusoidal signals. Gaussian white noise was added to

the data to give a sensor level Signal to Noise Ratio (SNR)

of zero decibels (same signal and noise power). Figure

1(a) shows an example of a source located intentionally

far from the nearest patch, Figure 1(b) shows the default

MSP estimation with a fixed set of patches, all patches were

spatially normally distributed with full width half maximum

of approximately 10 mm. Due to the absence of patches at the

simulated source location, two nearby regions were activated

causing a localization error of 9.77 mm. The translucent glass

brains of Figure 1 show the frontal, lateral and superior views

of the 512 sources with highest variance during the time

windows of interest.

(a) Single source simulation (b) MSP reconstruction with fixed
patches

Fig. 1. Glass brains with frontal, lateral and superior views of the power of
the neural activity: 1(a) Source generated intentionally far from the nearest
patches. 1(b) MSP reconstruction with a fixed set of patches, the localisation
error was 9.77 mm and the activity was divided in two regions.

Figure 2(a) shows the Free energy values of Ng = 1000
reconstructions, Most of them had high values showing the

capability of MSP to generate adequate solutions. Figure

2(b) shows the sorted probability of all 1000 models, the

top 5 % of most probable models was achieved with just

the first two models, and the 95 % cumulative probability

distribution (CDF) is achieved with the first 162 models. The

bottom 5 % of most probable models (838 models) were not

included in the BMA. Figure 2(c) shows the BMA estimation

of the neural activity map, the localisation error was zero

and the solution was almost the same of the original map

(Figure 1(a)). The robustness in the solution is evidenced in

Figure 2(d), where the map of the worst solution in terms

of Free energy (F = 2304.8) effectively presented several

ghost sources rounding the true active region.

After several tests (10 in total with up to 3 sources

randomly located) the default MSP solution presented a mean

localisation error of 8.74 mm, while the proposed approach

presented a mean localisation error of 1.48 mm. The MSP

presented rare cases of up to 50 mm of localisation error

(especially with deep sources), but all solutions with the

proposed approach presented maximum localisation errors

of up to 10 mm.

Computationally the proposed approach took around 8

hours in a 2.4 GHz Intel Core i7 processor, with 6 GB RAM;

which is too large compared with the approximately 30

seconds of the default MSP. However the provided robustness

makes this time consumption feasible in neuroimaging; and

it is expected that with parallel computing this time will

be severely reduced because the iterations do not share

information.

IV. VALIDATION WITH REAL DATA

We used some MEG data acquired in a visual attention

task to validate the method. A detailed description of the ex-

perimental set-up and previous data analysis were presented
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Fig. 2. 2(a) Free energy over Ng = 1000 solutions, most of them have
acceptable values. 2(b) Models within 95 % higher probability were used
for BMA computation. 2(c) BMA reconstruction, the source was located
with zero localisation error. 2(d) Example of a bad source reconstruction,
several ghost sources appeared rounding the activation region.

in [9]. For this validation averaged single subject data were

used.

Figure 3(a) shows the BMA estimate over Nb = 1000
solutions with random patches, physiologically plausible

sources in visual cortex can be observed and non interesting

activity in other regions of the brain did not affected the

reconstruction. Different case is shown in Figure 3(b), the

source activity map of the reconstruction with lower Free

energy demonstrates the problem of not having patches in

the region of interest. All the activity was dispersed around

the visual cortex, confirming both assumptions proposed

before: Bad source reconstructions concentrate their activity

in the patches nearer to the true neural source, and the Free

energy values of bad reconstructions are lower than those

with patches correctly placed. Here higher Free energy values

rounded F = 1760, while the solution of 3(b) had a Free

energy of F = 1754. A Free energy difference of 3 means

that the solution is out of the 95 % of confidence interval;

here the difference was 6, i.e. the probability of the worst

model being the true one compared with the model of higher

Free energy is 0.33 %.

Based on those results presented in this manuscript plus

previous results (not shown here) valid reconstructions

(based on Free energy, as shown on Figure 2(b)) were

achieved in about 20 to 50 % of the iterations. Here a magic

number of Ng = 1000 iterations was used for demonstrating

the concept, but statistically stable results can be achieved

with Ng > 10 (1 of every 10 simulations gives a feasible

result), but for improving the mean error of the MSP this

number must be considerably higher (at least Ng > 100).

(a) BMA estimate of visual cortex
activity

(b) MSP reconstruction with bad
location of patches

Fig. 3. 3(a) The BMA estimate recovered activity within the visual cortex
coincident with previous analysis. 3(b) A bad location of sources caused
also lower Free energy and a wrong brain image.

V. CONCLUSIONS

In this manuscript a localisation improvement on the

MSP inversion scheme was presented, it was shown how

averaging the brain images of several solutions based on

random location of patches, reduced the localisation error

and added robustness to the solution.

We have demonstrated a robust and generic scheme which

could be extended to address question of patch extent or

even, given accurate knowledge of head location, possibly

cortical layer.
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