
Investigation of Brain Tissue Segmentation Error and its Effect on
EEG Source Localization

Yazdan Shirvany∗, Student Member, IEEE, Antonio R. Porras, Koushyar Kowkabzadeh, Qaiser Mahmood,
Hoi-Shun Lui, Member, IEEE, and Mikael Persson, Member, IEEE

Abstract— Surgical therapy has become an important ther-
apeutic alternative for patients with medically intractable
epilepsy. Correct and anatomically precise localization of the
epileptic focus, preferably with non-invasive methods, is the
main goal of the pre-surgical epilepsy diagnosis to decide
if resection of brain tissue is possible. For evaluating the
performance of the source localization algorithms in an actual
clinical situation, realistic patient-specific human head models
that incorporate the heterogeneity nature of brain tissues is
required. In this paper, performance of two of the most widely
used software packages for brain segmentation, namely FSL
and FreeSurfer has been analyzed. Then a segmented head
model from a package with better performance is used to
investigate the effects of brain tissue segmentation in EEG
source localization.

I. INTRODUCTION
Studies of the human brain have been of significant interest

for medical doctors and neurosurgeons throughout the years.
Functional magnetic resonance imaging (fMRI), electroen-
cephalography (EEG) and integrated method, EEG/fMRI,
have been the main tools for monitoring neural activities
in many clinical studies. Recent development in computer
hardware and computational physics provide an excellent
platform for numerical modeling of these diagnostic tools,
which allow us to develop semi-automated or even automated
solutions for analyzing functional data and for diagnostic
purposes, e.g., localizing epileptic brain activity.

In the past, due to the limitation of computer resources and
numerical modelling techniques, only simplified spherical
head models are used for brain activity source localization
problems [1], [2]. As discussed in [3], for EEG source local-
ization the CSF layer plays an important role in modifying
the scalp potentials and it also affects the inverse source
localization results. Moreover, Wolters et al. in [4] showed
that anisotropic (different conductivity values in different
space directions) skull and white matter conductivities affect
the current flow distribution inside the head volume and
the forward potential computation, respectively. Thus, if
one would need to evaluate the performance of the source
localization algorithms in an actual clinical situation, realistic
patient-specific human head model that incorporates the
heterogeneity nature of brain tissues and conductivities is
required.

To build these realistic patient-specific head models, it
is necessary to obtain all information about the tissues
and anatomical structures between the signal source(s) and
receiving electrodes. One way to obtain such information is
to perform accurate segmentation based on anatomical brain
MR images. After the anatomical information is extracted
from the clinical MR images, we need to incorporate it to
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build the model. With the advancement of computational
physics together with computational resources, it is possible
to spatially discretize the anatomical structure of the human
brain and to simulate the entire brain activity source localiza-
tion problem using finite element method (FEM) [5]. Using
FEM, the heterogeneity nature of human brain is taken into
account and realistic patient-specific head models are thus
developed.

Out of these two steps for generating realistic head models,
accurate brain segmentation is more important as the accu-
racies of the segmentation result would directly affect the
accuracies for both forward and inverse problems for brain
activity source localization. In the last two decades, many
research groups have designed software packages for brain
MRI data sequence analysis, reconstruction of the brain’s
cortical surface from anatomical MR data and registration
of functional MR data on the reconstructed cortical surface.
Among them, the most widely used are FMRIB Software
Library (FSL) [6] and FreeSurfer [7].

The objective of this work is to investigate how the accu-
racies of the segmentation results could affect the accuracies
in EEG source localization. To the best of our knowledge,
such kind of studies has not been well investigated. As a first
step, we consider simulated brain phantoms from BrainWeb
[8] with “ground truth” (GT) in this study. Such numerical
phantoms are available in the internet and they serve as
a platform for evaluation of segmentation performance in
the image analysis society. In this work, the BrainWeb
phantoms are segmented using FSL and FreeSurfer and the
corresponding segmentation results are evaluated. Then, FE
models of the GT and segmented head models are built. The
GT FE head model is used for generating EEG signals by
putting an artificial source inside the model to mimic the
clinical data from patients. The segmented head models are
then used to perform the brain activity source localization.
Here, we would like to investigate the performance of the
source localization under imperfect tissue segmentation.

The paper is outlined as follows. Details about the evalu-
ation tools of the segmentation results and the EEG source
localization will be given in the next section, followed by
some numerical results and discussions. Conclusions and
future work will be reached towards the end of the paper.

II. METHOD
A. Brain Tissue Segmentation

Brain tissue segmentation of BrainWeb phantom is first
performed independently using these two software packages.
Comparison between the two sets of segmentation results
is performed in a voxel-by-voxel basis by counting the
number of true positives, false positives, true negatives and
false negatives voxels for each tissue type. Having these
measures as a starting point, the specificity, sensitivity and
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Fig. 1: Flowchart of the EEG source localization scenario. Note: ROI
stands for region of interest.

mis-classification ratio (MCR) are computed [9], [10], [11],
[12], which are defined as

Speci f icity =
True Negatives

True Negatives+False Positives
×100%,

(1)
Sensitivity =

True Positives
True Positives+False Negatives

×100%,

(2)

MCR = (1− volume(A∩B)
volume(B)

)×100% (3)

where A is a segmented tissue and B is the GT tissue
corresponding to A. Specificity measures the probability of
correct classification of all voxels which are not part of the
tissue. Sensitivity, on the other hand, measures the probabil-
ity of correct classification of all voxels which belong to the
tissue. MCR gives an idea about the percentage of voxels
that has been incorrectly classified. The performance of the
segmentation of these three software packages are evaluated
and compared using these three parameters.

B. EEG Source Localization
Epilepsy is one of the most common neurologic diseases

in the world and many patients with epilepsy never receive
the treatment which make them seizure free. Surgical therapy
has become an important therapeutic alternative for patients
with medically intractable epilepsy. Source localization of
epileptic activity is a tool to delineate cortical areas/volumes
with abnormal neuronal activity of cells and networks [13].
However, correct and anatomically precise localization of the
epileptic focus is mandatory to decide if resection of brain
tissue is possible.

Source localization accuracy is affected by different fac-
tors including, head-modeling error, EEG signal noise and
electrode displacements as well as the computational error.
Among those the head model errors affect the scalp potentials
and also influence the forward and inverse source localization
results significantly [3], [4]. Roman et al. [3] showed that
the model with five tissues, i.e., grey matter (GM), white
matter (WM), cerebrospinal fluid (CSF), skull and skin, has

(a) (b)
Fig. 2: Summary of the segmentation results for (a) FSL, (b) Freesurfer.

a good approximation of the head model for EEG source
localization. Moreover, the number of tissues using in the
head model and their accuracies are heavily depend on
the brain tissue segmentation accuracy. To understand the
effects of brain image segmentation on the EEG source
localization, we set up a simulation scenario. This scenario
is implemented in two steps and is shown in Fig. 1. Step 1)
First, a FE head model was constructed from the GT MR
slices and 61 scalp electrodes was placed on the head model
surface based on 10/10 system [14]. Then, a simulation
dipole source was placed in the somatosensory cortex of the
GT FE head model and the synthetic EEG potentials were
calculated at the electrode positions by solving the forward
problem. Step 2) The inverse problem were solved for a five-
tissue FE head model constructed from the segmented MR
slices, i.e., GM, WM, CSF, skull and skin. In the inverse
problem we do an exhaustive search pattern, i.e., inversion
was performed for each possible source location in the motor
and sensory cortex area inside a region of interest (ROI) and
the site producing the smallest residual norm was selected
as the best possible source location.

III. RESULTS AND DISCUSSION
A. Brain Image Segmentation

The segmentation is performed over 18 T1-weighted MR
phantoms obtained from BrainWeb with 1×1×1 mm resolu-
tion. These phantoms correspond to images with 6 different
levels of noise (0%, 1%, 3%, 5%, 7% and 9%) and 3 levels of
radio-frequency in-homogeneities (0%, 20% and 40%). Next,
sensitivity, specificity and MCR were calculated to compare
the results. In this sense, for each parameters (sensitivity,
specificity and MCR), we obtained 18 different values for
each tissue type from each software. We then take an average
of the data to get an overall picture about the performance.

Summary of the segmentation results for FSL are shown
in Fig. 2a. In this case, specificity is close to 100% for the
three tissues, which means that FSL is good at classifying
non-tissue elements. Moreover, for sensitivity, it is lower for
all tissues, especially for CSF with the lowest value of 51%.
Since sensitivity is the ability to detect all voxels that are
part of the tissue type, it means that FSL is able to detect
71% of voxels for GM and WM, and 51% for CSF. Finally,
if we look at MCR, we can see that for GM and WM, the
MCR is about 25%, but for CSF it is close to 46%. Fig. 3,
shows the difference between the segmented result and the
GT for each tissue for the case of 1% RF noise and 20% RF
in-homogeneities.

There are some differences between output of FreeSurfer
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Fig. 3: Comparison between segmented tissues in FSL (red) and ground
truth (green) for the 1% noise and 20% RF in-homogeneities phantom. (a)
WM, (b) GM and (c) CSF.

and FSL. Instead of having separate images for different
tissue types, FreeSurfer creates a single image with all infor-
mation with different intensities. For comparison purposes, it
is important to extract the three tissue types (WM, GM and
CSF) into three separate images. Second, the segmentation
output from FreeSurfer results in 47 different tissues. These
structures are classified into three tissue types by a clinical
expert. Summary of the segmentation results for FreeSurfer
are shown in Fig. 2b. If we consider the specificity for
FreeSurfer, we can see that specificity is high and close to
100% for all the three tissues. However, sensitivity is lower
for WM (73%), GM (67%), and much lower for CSF (4%).
This indicates that FreeSurfer is not able to segment CSF
correctly. If we consider MCR, we can see that it is similar
to those obtained in FSL for GM and WM, but it is much
worse for CSF. Fig. 4, provides a visual view between the GT
and the segmented output from Freesufer for the case with
1% noise and 20% RF in-homogeneities. It can easily be
seen that the classification for CSF is wrong and part of the
WM and GM is not segmented properly. The above findings
show that FSL gives more reliable results for brain tissue
segmentation, especially for CSF. As CSF has the important
role in EEG source localization [3] FSL is chosen as the
segmentation tool for EEG source localization in this work.

B. EEG source localization
We selected a T1-weighted BrainWeb MR phantom with

1 × 1 × 1 mm resolution, 3% noise and 20% RF in-
homogeneities. We tried to select a MR data set which had
a level of noise comparable with a real noise-contaminated
MR data. Fig. 5a, shows the cross section of the GT FE head
model. This model has 8 tissues, i.e., GM, WM, CSF, fat,
muscle, conductice tissue (CT), skull and skin. The following
conductivities are assigned to the GT FE compartments
based on their segmentation labels and the isotropic reference
model [15]: GM = 0.33 S/m, WM = 0.142 S/m, CSF = 1.538

Fig. 4: Comparison between segmented tissues in Freesurfer (red) and
ground truth (green) for the 1%noise and 20% RF in-homogeneities phan-
tom. (a) WM, (b) GM and (c) CSF.

(a) (b)
Fig. 5: The FE head model generated from a) ground truth, b) FSL
segmented data. Note: CT stands for conductive tissue.

S/m, fat = 0.02081 S/m, muscle = 0.26671 S/m, CT = 0.1628
S/m, skin = 0.43 S/m and skull = 0.0042 S/m (skull to skin
conductivity ratio of approximately 1:100).

The segmentation of the five tissues is done by FSL in two
steps. In a first step, mask of skin, skull and brain is generated
by using a preset intensity threshold value (ITV) in the BET
module. In a second step, automated segmentation of three
tissues i.e., GM, WM and CSF, of the brain is performed by
applying the FAST module [6]. For the BET step different
ITVs, i.e., 0.3, 0.4 and 0.5, are tried but here we just present
the results obtained from 0.3 which has the minimum source
localization error. Fig. 5b shows a cross section of the five-
tissue FSL FE head model for 0.3 threshold value. The
assigned conductivities to FSL model are same as GT model.
Comparison between GT and FSL FE head model in Fig.
5a and 5b shows that the amount of CSF in FSL model is
much more than the GT model. Moreover, fat, muscle and
conductive tissue (CT) are mainly classified as skin in FSL
model. Table I shows the tissue overlapping percentage [16]
between the segmented results and the GT for each tissue.
The ideal value in this table is 100% which means that a
selected tissue is 100% same as the corresponding tissue in
the GT MR image. As we can see in Table I the segmentation
results for 0.4 and 0.5 are almost the same and consequently
the EEG source localization result was the same as well.

Fig. 6, shows the results of the exhaustive search for the
head model with intensity threshold value 0.3. The results
was plotted on the GT MR images. The yellow patch shows
the position of the simulation source and the red patch
indicates the position of a estimated source. As we can see
in Fig. 6, the x- and y-coordinates of the estimated source
are correct and they correspond to the simulation source,
while the z-coordinate is deeper. The source localization
error, distance between the simulation and estimated source,
was 1.2 cm. The results visualization was done in Slicer [17].
Fig. 7, shows the EEG potential generated by the simulation
and estimated source at each individual sensor. The relative
error between these two EEG potentials was 0.14.

Notice that we have used an exhaustive search pattern
to localize the sources. This means that all the possible
GM cells were searched in the 1 mm cubic volume of the
motor and sensory cortex. The cell producing the least error
was selected as the possible source location. This provides
the best behavior of a given model in the inverse source
TABLE I: Tissue overlapping percentage for three different
intensity threshold values (ITV)

ITV=0.3 ITV=0.4 ITV=0.5
GM 95.83% 95.85% 95.85%
WM 91.22% 90.08% 90.07%
CSF 76.13% 73.20% 73.18%
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Fig. 6: The results of the exhaustive search plotted on the GT MR images.
The yellow patch is the simulation source and the red patch is the estimated
source. Note: The MRI space in Slicer is flipped compare to the anatomical
space.

localizations and that mean this is the best result one could
expect from a given model.

IV. CONCLUSION
The accuracies of the brain tissue segmentation using

FSL and FreeSurfer are evaluated and the impacts of how
the segmentation accuracies could affect the performance
of EEG source localization are investigated using simulated
brain phantoms from BrainWeb. Comparing with the “ground
truth”, the results show that the segmentation results obtained
from FSL give better accuracies than those from FreeSurfer.

A realistic head model is developed based on the segmen-
tation results obtained from FSL and EEG source localization
is performed using the FSL-segmented head model. The
results show that the x- and y-coordinates of the estimated
source point is well located but not the z-coordinate. This is
probably due to the relatively large segmentation error in the
CSF. Moreover, the brain extraction step can affect the CSF
miss-classification significantly while the large amount of the
CSF is placed in between the brain and skull compartments.
During this pre-processing step, part of the CSF may be
regarded as skull and skin mask. To handle this, we need to
develop or seek alternative solutions for brain extraction and
brain tissue segmentation that could result in a more accurate
CSF classification. Furthermore, this work is performed
using simulated BrainWeb phantoms. Future work should
also consider using clinical MR images from patients.

It will be interested to compare the source localization
performance using FE head models developed using “ground
truth” segmentation result done by clinical experts verse
segmentation tools such as those considered in this paper
and also integrating different imaging modalities (e.g., T1-
,T2/Proton Density (PD) and Diffusion Tensor (DT)-MRI)
to give a more accurate description about the anatomical
structure of the head and conductivity of different tissues.
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