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Abstract— The EIT reconstruction problem can be solved
as an optimization problem where the divergence between
a simulated impedance domain and the observed one is
minimized. This optimization problem can be solved by a
combination of Simulated Annealing (SA) for optimization
and Finite Element Method (FEM) for simulation of the
impedance domain. This combination has usually a very high
computational cost, since SA requires an elevated number
of objective function evaluations and those, obtained through
FEM, are often expansive enough to make the whole process
inviable. In here it is presented a new approach for EIT image
reconstructions using SA and partial evaluations of objective
functions based on overdetermined linear systems. This new
reconstruction approach is evaluated with experimental data
and compared with previous approaches.

I. INTRODUCTION

EIT is a diffuse imaging technique for determining the
electrical conductivity distribution inside an object from its
boundary measurements. A set of electrodes is attached to
the object surface, for example, a human body, then electrical
current is injected through these electrodes and electrical
potential on these electrodes are measured. In EIT it is
possible to reconstruct either difference or static images. The
difference image modality can be used when changes in the
resistivity occur [1]. The reconstruction of static image is
a substantially more difficult problem than the difference
imaging problem because it is necessary to have a reference
voltage.

This paper is structured as follows. Section II presents
the problem formulation. Section III explains the proposed
algorithm where a SA with incomplete evaluation of the
combined objective functions is used to solve the EIT
reconstruction problem. In section IV some results obtained
from physical data are presented. Finally, section V rounds
up the paper with the conclusions.

II. BACKGROUND

A. Formulation of the Forward Problem

The flow of electrical current within a conductive thin
film, Ω, can be described at any point by the 2D Laplacian
equation

∇(σ∇φ) = 0 (1)

where σ is the film conductivity and φ is the electrical
potential. The typical forward problem in EIT is given
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the conductivity distribution σ and the current J injected
through boundary electrodes, find the potential distribution
φ within Ω and in particular the resulting potentials at the
measurement electrodes φm. The frequencies used in EIT are
low enough so that the quasi-static approximation holds, and
thus one can ignore capacitive and inductive effects. At the
boundary, currents are injected through electrodes; thus the
current density Jl injected through the l-th electrode is given
by (current pattern)

σ
∂φ

∂ n̂
= Jl (2)

where n̂ is the external normal versor, and the current density
is zero elsewhere at the boundary [2].

B. The Inverse Problem

The inverse problem is formulated as given the injected
currents Jl and the potentials at measurement electrodes φm,
find the electrical conductivity distribution σ within Ω. The
Laplace equation (1) with Dirichlet and Neumann boundary
conditions applied is referred to as the continuum model of
the forward problem [3]. If considering only the real part
of conductivity, the model is still valid with a unique and
strictly positive conductivity function σ [4].

For an irregular domain and isotropic media, analytical
solution to the Laplace equation (1) with boundary condi-
tion (2) is unknown; thus, the partial differential equations
were approximated by the FEM, the domain is discretized
with triangular linear elements with constant conductivity
and both problems, forward and inverse, are solved numer-
ically. The virtual potential principle associated with the
Laplace equation provides the local element matrices. When
the local element matrices are stated in terms of the global
coordinates of the mesh, the global conductivity matrix [3]
which includes electrode contact impedance effects, is ob-
tained; then the following relation holds

K ·Φ =C (3)

where K(σ)∈Rs×s is the conductivity matrix calculated at a
given particular distribution σ , Φ is a matrix containing nodal
potentials corresponding to each applied current pattern, and
C represents p linearly independent current patterns.

III. PROPOSED ALGORITHM

One possible approach to the EIT inverse problem is to
look at it as an optimization problem, where the optimization
variables are parameters of a simulated domain and the ob-
jective function is some measure of consistency between the
data obtained from the simulated domain and the measured
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data. Since, as seen in section II-B, the FEM can be used
to solve the forward problem on a simulated domain, one
possibility for such objective function is to take the Euclidean
distance

E (σ) =
√

Σ|Φi
m−Φi

c (σ)|2 (4)

between the measured electric potentials Φi
m and the cal-

culated potentials Φi
c (σ) for every applied current pattern.

Indeed, the minimization of (4) is a classic approach to EIT
[5, 6, 7, 8]. In [5] it was pointed that the minimization of (4)
using gradient-based algorithms is difficult, since (4) is often
ill-conditioned. Herrera et al. [6] avoided the computation
of objective function gradients by means of SA and by
doing so, managed to reconstruct very accurate conductivity
distributions of the body, but at a very high computational
cost. This is unsurprising, as each step of the SA involves
the solution of a full FEM problem in order to evaluate the
objective function.

Martins et al. [7, 8] proposed a mitigation of this high
computational cost: instead of fully evaluating the objective
function E at each SA iteration, an estimate Ẽ and upper
and lower boundaries Emax and Emin are obtained. Since SA
deals only with variations of the objective function between
iterations, those are converted in an estimate and boundaries
of variation ∆Ẽ, ∆Emax, ∆Emin. It was shown if in a given
iteration ∆Ẽ, ∆Emax, ∆Emin satisfy

e
−∆Emax/kt ≥

{
1−Perr if ∆Ẽ ≤ 0,

e
−∆Ẽ/kt −Perr if ∆Ẽ > 0

(5)

e
−∆Emin/kt ≤ min(1,Perr + e

−∆Ẽ/kt ) (6)

then the probability of SA at that iteration deviating of an
SA with full objective function evaluation is less than Perr.
Estimates of the objective function were obtained by itera-
tively solving (3) with Conjugated Gradients (CG) algorithm
while obtaining an upper limit on the norm of the error at
each CG iteration using a technique described in [9]. In order
to convert limits on norms of the error on solutions of (3)
to limits on the error on the evaluation of (4), the following
simplifications were adopted:

1) The CG error norm limit at iteration i is taken as the
error norm limit at iteration i+d, that is, the error limit
for a given iteration is only obtained d iterations latter,
where d is a parameter linked to the conditioning of
the matrix (in [7] d = 1 was used). This is correct as
the CG error norm is monotonically decreasing.

2) The error norm limit for all combined variables (po-
tentials at the mesh nodes) is taken as the error norm
limit for just the electrode potentials.

3) The sum of the squares of the error norm limits
for all current patterns is taken as the limit for the
squared norm of the objective function error (correct
by triangular inequality).

Each of those simplifications leads successively to an error
overestimation. Simplification 2 is problematic, as it does not
scale well with mesh density. Indeed, as the mesh density

increases, the relation between the number of electrodes and
the number of nodes decrease, leading to increasingly the er-
ror norm overestimation. As such, it would be advantageous
to obtain a method that scales with increased mesh density.

A. Least squares error as an objective function

By taking (3), reordering the variables such that the
electrode potentials correspond to the last elements of Φ,
one can write(

Kii KT
ic

Kic Kcc

)(
Φi
Φc

)
=

(
0
Jl

)
(7)

where Φi is the vector of tensions at the internal nodes, Φc
is the vector of tensions at the electrodes, Kii, Kic and Kcc
are blocks of the matrix K (σ). Considering Φc = Φm (that
is, the potentials at electrodes of the simulated domain are
identical to the measured ones) and allowing an error on (7),
then

K̂ (σ)Φ+ e = Ĵl (8)

where

K̂ =

(
Kii
Kic

)
Ĵl =

(
−KT

icΦm
Jl−KccΦm

)
(9)

and e is an error vector added to the reduced system to make
it consistent with the replacement Φc⇒Φm. Since the error
required tends to zero as Φc approaches Φm, one could take
its minimum, subject to (8), as the measure of consistency
between the simulated domain and the physical experiment
for a given current pattern. A new objective function is

E(σ) =
√

∑
l

Dl(σ)
2 (10)

Dl = min
Φ

{√
eTe : K̂ (σ)Φ+ e = Ĵl

}
(11)

The minimization problem in (11) is a typical least squares
problem which solution is given by

Dl2
= ĴT

l Ĵl− ĴT
k K̂
(
K̂T K̂

)−1
K̂T Ĵl . (12)

In [11, chap. 7], Golub exploited the link between the Lanc-
zos tridiagonalization algorithm and Gaussian Quadrature to
estimate efficiently the values of quadratic forms vT f (A)v
where v is a vector, A is a symmetric matrix and f (x) is
an analytical function. The Lanczos Algorithm [12] is a
decomposition algorithm that for a given symmetric positive
definite matrix A iteratively construct tridiagonal matrices Lk
such that

AVk = Vk ·Tk +ηkvk+1 (ek)
T (13)

where V is an orthonormal matrix and T is a tridiagonal
symmetric matrix.

The form vT f (A)v can be expressed as a Riemman-
Stieltjes integral

∫ b
a f (λ ) dα(λ ) for a specific measure α(λ )

obtained from v and the spectral decomposition of A (the
integration limits are the lowest and highest eigenvalues of
A). That integral can be in turn approached by Gaussian
Quadrature rules whose coefficient are directly obtained from
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the Tk matrices from Lanczos algorithm when its starting
vector is v. Indeed, for a Gauss rule,

vT f (A)v = ‖v‖2 f (Tk)1,1 + εk = ‖v‖2gk + εk (14)

and for a Gauss-Radau rule, the estimate is

vT f (A)v = ‖v‖2 f
(
T̃k
)

1,1 + ε̃k = ‖v‖2g̃k + ε̃k (15)

where T̃k is a modification of the matrix Tk in order to add
to its eigenvalues the lowest eigenvalue of A.

In particular, for f (x) = x−1, εk is positive and mono-
tonically decreasing with k while ε̃k is negative and mono-
tonically decreasing. As such, ‖v‖2gk and ‖v‖2g̃k create
sequences of increasingly tighter lower and upper boundaries
for vT f (A)v (it can be shown that in exact arithmetic,
gn = g̃n = vT f (A)v/‖v‖2, where n is the rank of A). One can
thus iteratively obtain boundaries for the values of (12) (in
this case, Gauss rule gives an upper boundary and Gauss-
Radau rule gives a lower boundary). Conditions (5) and (6)
can be used as Lanczos algorithm iterations stopping criteria.

While the Lanczos algorithm could be applied directly by
taking A = K̂T K̂, in [13] it is proposed a variation called
“Lanczos bidiagonalization II” that takes advantage of the
special nature of K̂T K̂. The algorithm is as follows (adapted
from [13]):

r0 = Ĵ,δ0 = ‖r0‖,p0 = r0/δ0,u0 = K̂T p0
γk = ‖uk−1‖,qk = uk/γk+1,δk = ‖rk‖
pk = rk/δk,uk = K̂T pk−1−δk−1qk−2

rk = K̂qk−1− γipk−1

. (16)

The algorithm that builds matrices

Ck =


λ1

δ1
. . .
. . . γk

δk

 (17)

. The Gauss rule estimate of Dl2 is given by ‖Ĵl‖−‖K̂Ĵl‖gk,
gk =

(
Ck

TCk
)−1

1,1. To obtain this last value, a QR factorization
such that Ck

TCk = Bk
T Bk is used,

Bk =


φ1 ψ1

. . . . . .
φk−1 ψk−1

φk

 (18)

Finally, (Bk
T Bk)

−1
1,1 can be obtained by inspection. The rele-

vant iterations to obtain gk are:

φ1
2 = γ1

2 +δ1
2,c1 = −γ1/φ1,π1 = 1/φ1

2,g0 = 0
φk

2 = ck−1
2γk

2 +δk
2,sk = δk/φk

ck =−ck−1γk/φk,ψk = siγk+1
πk = πk−1ψk−1

2/φk
2,gk = gk−1 +πk

. (19)

For the Gauss-Radau rule, matrix T̃k = B̃T
k B̃k must be con-

structed from Tk so that it has the lowest eigenvalue of K̂T K̂.
One can show that this is equivalent to a simple modification
on φk, the last element of Bk. For that, first the components

of Tk must be computed. If αk and βk are the diagonal and
subdiagonals respectively,

αk = γ2
k +δ 2

k , βk = γk+1δk (20)

if a is the lowest eigenvalue of K̂T K̂, the iterations for
calculating g̃k are:

α̃1 = a, d̃1 = α1−a
d̃k = αk−a− β 2

k−1/d̃k−1, α̃k = a+ β 2
k−1/d̃k−1

φ̃ 2
k = α̃k−ψ2

k−1, g̃k = gk +πkψ2
k/φ̃2

k+1

. (21)

Of course, there remains the problem of obtaining the lowest
eigenvalue of K̂T K̂. In [11, chap. 12] there is a suggestion
of using the extreme eigenvalues of Tk as approximations for
the extreme eigenvalues of K̂T K̂. Since a LLT factorization
of Tk is obtained as a byproduct of the iterations in (19),
a reverse power iteration can be easily performed to obtain
a good estimate of a. In practice, for a good estimate of a
much more iterations are needed (here it is used n/8, where
n is the rank of K̂T K̂) than the required by conditions (5)
and (6). This is not too wasteful though, as those iterations
can be performed while solving for a single current pattern
and then the a value can be reused while solving for every
other current pattern.

Just like in [7], one can also apply preconditioning to this
technique and reuse values from previous SA iterations as
initial guesses in order to improve convergence.

B. Shortcomings and Workarounds

Since SA can change the elements of matrix K̂, it can make
the subproblem of optimizing (11) arbitrarily ill-conditioned
by making Kic very close to zero. Physically, this is the
equivalent of creating a domain with an outer ring of very
low conductance. Under those circumstances, arbitrarily low
values of (12) can be obtained. One possible solution to
this problem is to impose a fixed value of conductance on
the outer layer of the domain, thus fixing Kic. It is very
convenient, because the reconstruction procedure proposed in
[7, 8] is able to find the impedance of the outer layers very
early in the process. One can then start the reconstruction
using the procedure in [7], stop it when the outer impedance
has converged and use its data to fix Kic. This has the added
benefits of reducing the optimization variables of the algo-
rithm (although this benefit is of marginal importance - the
inner layers correspond to almost all impedance parameters
of the problem) and fixing Ĵl between SA iterations (since
Ĵl do not depend on Kii).

IV. RESULTS

To validate the proposed approach, the experiment in [7, 8]
was reproduced, with three cucumber slices immersed in a
cylindrical container with 32 electrodes (see Fig. 2a). The
same 32 linearly-independent current patterns were applied.
The image was reconstructed both with the process proposed
in [7, 8] and the process proposed here. The same SA
parameters were used for both reconstructions, except the
initial temperature, which was reduced tenfold to account
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(a) (b) (c)

Fig. 1: (a) “Line” Phantom and its reconstructions using
(b) the approach in [8] and (c) the new approach.

(a) (b) (c)

Fig. 2: (a) “Triangle” Phantom and its reconstructions using
(b) the approach in [8] and (c) the new approach.

for the different scale of the objective function of the new
process.

Two patterns of cucumber slices were tested, one where
the slices were arranged in a triangular pattern (see Fig. 2a
and its reconstructions in Fig. 2b and 2c) and another one
where the slices were arranged in line (see Fig. 1a and its
reconstructions in Fig. 1b and 1c).

One can see that the image reconstructed with the new
process is as good as the obtained with the old one. The
few impedance artifacts seen in the outer layers (particularly
in Fig 1c) can be explained by the greater sensitivity of this
process to mesh errors (a coarse mesh tends to underestimate
electrode impedance). This greater sensitivity is related to
the fact that the new process impose Φc = Φm and the
conductivity of the outer layer is obtained from the old
process, that tolerate differences between Φc and Φm. It is
expected that with a denser mesh, those artifacts would go
away.

On the performance front, the number of iterations re-
quired to evaluate the objective function on the new algo-
rithm is on average less than 1/3 of the required by the old
one. Considering that each iteration of the new algorithm is
roughly twice as costly as an iteration of the old one, this
means a speedup factor of about 3/2.

V. CONCLUSIONS AND FUTURE WORK

It is proposed here a new approach to solve the EIT inverse
problem that mitigates the scalability problems identified
in [7, 8]. This approach uses estimates with bounded error
on the solution of least square problems and a variation

of SA that deals with incomplete evaluation of objective
functions. Initial results show that the new approach has
potential of a greater performance than the reconstruction
process proposed in [7, 8]. One of the process limitations
is that, due to potential ill-conditioning of the underlying
least square problems, it is unable to calculate the impedance
distribution on the outer layer of the domain. It would be
interesting to verify how regularization techniques such as
Tikhonov regularization can eliminate this limitation.

REFERENCES

[1] D. C. Barber and B. H. Brown, “Applied potencial
tomography,” J Phys E Sci Instrum, 17, 723–733, 1984.

[2] B. H. Brown and A. Seagar, “The sheffield data collec-
tion system,” Clin Phys Physiol M, 8, A91–A97, 1987.

[3] F. C. Trigo, R. G. Lima, and M. B. P. Amato, “Electrical
impedance tomography using the extended Kalman
filter,” IEEE T Bio Med Eng, 51, 72–81, 2004.

[4] R. V. Kohn and M. Vogelius, “Determining conduc-
tivity by boundary measurements II. interior results,”
Commun Pur Appl Math, 38, 643–667, 1985.

[5] L. A. M. Mello, C. R. de Lima, M. B. P. Amato, R.
G. Lima, and E. C. N. Silva, “Three-dimensional elec-
trical impedance tomography: a topology optimization
approach.” IEEE T Bio Med Eng, 55, 531–40, 2008.

[6] C. N. L. Herrera, M. F. M. Vallejo, F. S. Moura, J.
C. C. Aya, and R. G. Lima, “Electrical impedance
tomography algorithm using simulated annealing search
method,” in Proc Int Cong Mech Eng. Brası́lia, Brazil,
2007.

[7] T. C. Martins, E. D. L. B. Camargo, R. G. Lima, M. B.
P. Amato, and M. S. G. Tsuzuki, “Electrical impedance
tomography reconstruction through simulated annealing
with incomplete evaluation of the objective function.”
in Proc 33rd Annual Int Conf IEEE EMBS. Boston,
USA, 2011.

[8] T. C. Martins, E. D. L. B. Camargo, R. G. Lima,
M. B. P. Amato, and M. S. G. Tsuzuki, “Image
reconstruction using interval simulated annealing in
electrical impedance tomography,” IEEE T Bio Med
Eng, 10.1109/TBME.2012.2188398.

[9] G. Meurant, “Estimates of the l2 norm of the error in
the conjugate gradient algorithm,” Numer Algorithms,
40, 157–169, 2005.

[10] G. H. Golub and G. Meurant, “Matrices, moments and
quadrature”, in Numerical Analysis, D. F. Griffiths and
G. A. Watson Eds., 1994, 303, 105–156.

[11] G. H. Golub and G. Meurant, Matrices, Moments
and Quadrature with Applications, Princeton University
Press, 2010.

[12] G. Meurant, The Lanczos and conjugate gradient al-
gorithms: from theory to finite precision computations,
SIAM, 2006.

[13] G. H. Golub, U. v. Matt, “Generalized cross-validation
for large scale problems,” J Comput Graph Stat, 6, 1–
34, 1995.

1521


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

