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Abstract— Classification of airway shapes in chest X-ray 

images may be useful in computer-aided detection of 

lymphadenopathy associated with pediatric tuberculosis. This 

paper presents an interactive approach for airway segmentation 

from chest X-ray images that may be used in an airway shape 

classification algorithm. A local normalization filter is applied 

as a preprocessing step to enhance the visibility of the airways. 

Segmentation is then performed with the aid of active shape 

models (ASMs), which are warped to a set of manually defined 

control points on the image to be segmented, using an affine 

transformation. Two shape models are built, one of which 

consists of points on the airway edges only and the other 

consists of points on the airway edges as well as points on the 

ribs. The ASMs are built from a set of manually segmented 

images. The Hausdorff distance is used to compute the accuracy 

of the segmentations with reference to a manual segmentation.  

 

I. INTRODUCTION 

Pulmonary tuberculosis (TB) caused an estimated 1.4 
million deaths in 2010, according to the World Health 
Organization. The diagnosis often relies on chest X-ray 
imaging, especially in the case of children. Computer-aided 
diagnosis may be used to increase the accuracy of diagnosis 
and reduce the dependence on scarce radiologists, especially 
in low-income countries with a high TB burden.  

Lymphadenopathy, which manifests as bronchial 
compression due to enlarged lymph nodes, is a hallmark 
indication of tuberculosis in pediatric pulmonary 
tuberculosis [1]. X-ray images contribute to the resources 
used for the detection of lymphadenopathy because of easy 
access and low cost as well as the lower radiation exposure 
in comparison with computed tomography [3]. A study 
carried out by Swingler et al. [3] concluded that the use of 
chest X-ray imaging to detect lymphadenopathy in children 
is unreliable due to the poor visibility of airways. However, 
digital slot scanning radiography has been shown to provide 
better visualization of airways compared to the image quality 
provided by conventional X-ray systems [4]. It may be 
possible to exploit the airway visibility in such images to aid 
the diagnosis of diseases such as TB which lead to changes 
in the shape of chest airways.  

 
Research supported by Lodox Systems and the Technology and Human 

Resources for Industry Programme of the National Research Foundation in 

South Africa. 

Teshwaree Tezoo is an MSc student in the Biomedical Engineering 

Programme and the MRC/UCT Medical Imaging Research Unit, University 

of Cape Town. 

Tania S. Douglas is with the Biomedical Engineering Programme and 

the MRC/UCT Medical Imaging Research Unit, University of Cape Town, 

Observatory 7925, South Africa. (phone: +27 21 4066541; fax: +27 21 

4487226; e-mail: tania@ieee.org). 

The lack of contrast between overlapping anatomical 
structures in chest X-ray images renders the airway borders 
inconspicuous. Therefore, low-level segmentation methods 
which rely on local pixel intensity, such as threshold, region 
growing or edge detection are ineffective for accurate shape 
delineation. Model based segmentation methods may be 
used, as they can overcome detection limitations due to 
shape variations among airways and low contrast. In this 
paper we describe the use of interactive segmentation of 
airways using active shape models (ASM). The aim is to 
delineate the airway edges for potential use in the 
classification of airway abnormalities caused by TB-induced 
lymphadenopathy in children. 

II. METHODOLOGY 

Fig. 1 shows the steps involved in segmenting the 
airways. To obtain delineated airway shapes, test images are 
initially filtered using a local normalization filter followed by 
warping of a mean airways model to the airways, and finally 
segmentation by the ASM algorithm.  

A. Local normalization filter 

The local normalization filter performs global 
equalization of contrast throughout an image [5]. It 
normalizes the local image intensity difference from the local 
average based on the local standard deviation. The local 
normalization of an input image L can be described as 
follows [5]:  

LLN = (L – LG)/( (L
2
)G – (LG)

2
)

1/2     
  (1) 

where LLN is the local normalization filtered image and 
subscript G indicates Gaussian blurring. The only parameter 
in this equation is the standard deviation of the Gaussian 
blur, which determines the size of the region used in 
calculating the local mean and standard deviation. 
Experiments were performed by Long [2] to determine the 
optimum local normalization filter width to be used in 
relation to the average maximum airway diameter. A filter 
width of 80% the average maximum airway diameter was 
found to be optimal for segmentation methods based on 
relative greyscale intensities, such as ASM. The maximum 
airway width was measured each of all the images in a 
training set and the average was calculated. 80% of this 
average value was used as filter width. 

 

 

 

 

Interactive Segmentation of Airways from Chest X-ray Images using 

Active Shape Models  

Teshwaree Tezoo and Tania S. Douglas, Senior Member, IEEE 

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

1498978-1-4577-1787-1/12/$26.00 ©2012 IEEE



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Steps involved in interactive segmentation using ASM 

B. Interactive active shape model segmentation 

Active shape model (ASM) segmentation was first 

developed by Cootes et al. [6]. It builds statistical models of 

a particular object’s shape and grey-scale landscape by using 

a set of annotated training images in which a set of key 

landmark points have been marked. The point distribution 

model (PDM) and the local image intensity are then 

calculated around each of those landmark points [6].   

1) Building the shape model 

The shapes from the manually segmented training set of 

X-ray images first need to be normalized to filter out the 

effects of pose (position, scale and rotation) to provide a true 

representation of the shape of an object. Procrustes analysis 

can be used to align the shapes and obtain a mean object 

shape. The Procrustes distance is a computation based on 

least-squares differences between landmarks comprising the 

shapes, to remove the effect of translation, rotation and 

scaling. The shape model is built as follows [7]:  

a) The centroids of a set of shapes are determined. 

b) The shapes are aligned with respect to position at 
their centroids. 

c) The mean shape is computed through the following 
iterative algorithm: 

i. The first shape in the training set of images is 
established as an approximate mean shape. 

ii. The remaining shapes are aligned to the 
approximate mean to minimize the Procrustes 
distance. 

iii. The approximate mean shape is re-calculated 
from the aligned shapes. 

iv. Steps іі and ііі are repeated until the mean shape 
converges on a stable shape. 

d) The shape component for every instance in the 

training set is computed as the difference between 

the mean shape and the pose normalised shape for 

that particular instance. 

At this stage the point distribution model is used to 

record the statistics of these aligned shapes by modeling the 

co-dependent variation of the landmark points. 

Principle component analysis is then applied to the 

aligned set of images Ut to represent it by the mean shape ū, 

the eigenvalues (λ1, λ2,.  . ., λk) and the corresponding 

eigenvectors (q1, q2,…, qk). The first t eigenvectors are 

selected, Q = (q1, q2,…, qt), such that the shape vector ui 

can be approximated as follows [7] :  

 ui ≈ ū + Qi    (2) 

where i = (i1, i2,…, it) is the vector of weights which 

controls the variants of the mean shape ū of ASM. 

The gray-level appearance of the object is modelled by 

examining the gray-level profiles obtained in the normal 

direction to the shape at each landmark point. Statistical 

analysis of these profiles is used to create a model for each 

landmark that consists of the mean gray-level profiles and its 

modes of variation [6].  

2)  Image search  

Given a rough starting position, the active shape model 

can be fitted to a test image. An iterative approach to fit the 

shape model to a test image is as follows [6]: 

a) Examine a region of the image around each landmark 
point to calculate the displacement required to 
move it to a better location. 

b) Compute the adjustments to the pose and shape 
parameters in accordance to the displacements. 

c) Update model parameters by enforcing limits on the 
shape parameters. Global shape constraints can be 
applied to ensure that the shape of the model 
instance remains similar to those in the training set. 

A. Comparing segmented shapes 

The Hausdorff distance measures the extent to which 
each point on one shape lies near some point of another 
shape and vice versa, when the two shapes are superimposed 
over one another [9]. This shape comparison method is 
suitable for instances where not all points from one shape 
have a corresponding point on the other, due to occlusion 
and noise. In such cases, where the two point sets are of 
different sizes so that no one-to-one correspondence exists 
between all points, the Hausdorff distance provides a 
dissimilarity measure [10]. 

The Hausdorff distance haus is defined as follows: 

haus = max ( maxi d(ai, B), maxj d(bj, A) )       (3) 

where,  i= 1,…,m; j = 1,…,n, 

A = {a1, a2,…, am}: the semi-automatically segmented 
airways to be evaluated, B = {b1, b2,…, bn }: the airways 
against which the semi-automatically segmented airways is 
to be evaluated.  Each ai or bj  is a point on the airway edge. 
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d(ai,B) = minj || bj - ai ||        (4) 

where,  j = 1, …,n. 

III. EXPERIMENTS AND RESULTS  

The chest radiographs used for this study were obtained 
using the Lodox Statscan slot scanning digital radiography 
machine on healthy and suspected TB patients at the Red 
Cross Children’s Hospital in Cape Town. 31 chest X-ray 
images were used for the training set, 14 of which were from 
healthy individuals and 17 from paediatric TB patients. A set 
of 25 images was used to test the performance of the 
algorithm, 14 of which were from healthy individuals and 15 
from paediatric TB patients. 

To improve the visibility of the airways in the 
radiographs, all the images were first filtered using the local 
normalization filter. Fig. 2 shows the filter results.  

 

 

(a) Original image        (b) Filtered image 

Figure 2. Application of local normalization filter. 

 

 Convergence of the shape model to the desired object 
depends heavily on algorithm initialization and the selected 
landmark points. To handle the lack of reliable landmark 
points on the airway structure, we built two different shape 
models. Comparison of the segmentation resulting from each 
of them would indicate which one is a better initialization for 
the ASM segmentation algorithm. One of the models is built 
from labeled points and landmarks on the airways only, 
while the other is built from points on the airways as well as 
the ribs. Each image in the training set was manually 
annotated with 30 points on the airway edges, 9 of which 
were used as control points, and 8 points on the ribs. All of 
the labeled points on the ribs as well as the 9 control points 
on the airways were used to build the shape model that uses 
airways and rib points. Only the 9 control points from the 
airway edges were used to build the shape model based on 
airway points only. The remaining manually annotated points 
were used as manual segmentation to test the performance of 
the segmentation algorithms. The airway shape to be 
segmented is restricted to the first bifurcation only since the 
visibility of the structure is significantly poor for further 
branching of the airways. Fig. 3 illustrates the control points 
used for the models. 

 

 

  

(a) Airway and rib points based    (b) Airway points based 

Figure 3. Landmark points for the two shape models 

Each model was initialized by warping the corresponding 
shape model to the test image using an affine transformation. 
Landmark points were manually selected on the test image to 
which the mean shape was warped. Fig. 4 shows the warped 
mean models for a particular test image, while Fig. 5 shows 
the ASM segmentation resulting from each shape model. In 
Fig. 4(a) the warped shape model constitutes of the mean 
airway model as well as the 8 rib points, which are also used 
as landmark points to guide the ASM segmentation 
algorithm. However in Fig 4(b) the warped shape model 
constitutes of the mean airway model only. 

 

 

a) Airway and rib points based         (b) Airway points based 

Figure 4. Affine warping results for the two shape models. 

 

  

    a) Airway and rib points based      (b) Airway points based 

Figure 5. ASM segmentation results for the two shape models. 

 

As a means to determine the matching accuracy of the 
two models, the Hausdorff distance was used. For each 
image, the manually segmented airway shape was used as 
ground truth. Fig. 6 shows a typical manual segmentation. 
The Hausdorff distance between the manually segmented 
airways and the segmentation output from the initialization 
with the shape model built from airway points only, as well 
as from airway and rib points, was calculated for each image 
in the test dataset of 10 images. Table 1 shows the Hausdorff 
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distance statistics as an indication of how dissimilar the 
ASM segmentations are to the manual segmentation.  

 

TABLE I.  HAUSDORFF DISTANCE STATISTICS (IN PIXELS) FOR ASM 

MODELS 

 Mean  STD 

Airway points model 18.89 9.94 

Airway & rib points model 25.18 15.67 

 

 

Figure 6. Manual airway segmentation 

 

   

             (a)      (b)       (c)   

        

(d)       (e)      (f) 

Figure 7. Segmentation results; top row: airway points based model; bottom 
row: airway and rib points based model; yellow: affine warping of shape 
model to manually selected points; red: ASM segmentation; blue: manual 
segmentation. 

IV. CONCLUSION 

This paper presents an interactive way of segmenting 
airways from X-ray images using active shape models. 
Initialization, which is one of the key contributors to a good 
segmentation, is performed by warping a mean shape model 
onto a test image, with the aid of control points selected 
manually. 

The airways were successfully delineated with the 
interactive ASM algorithm using both shape models. The 
Hausdorff distance comparison shows that the shape model 
built from airway and rib points produces greater variation 
and less similarity to manual segmentation that the model 
built from airway points only. The airways-only model 
requires less user interaction.  

The segmentation methods may be used in studies to 
determine whether the segmented airways of TB-infected 
children differ significantly in shape from those of healthy 
children. If they do, the airway segmentation algorithms may 
have potential for use in an airway classification tool for the 
detection of lymphadenopathy associated with tuberculosis 
in children.  
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