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Abstract— Fluorescence has become a widely used technique
for applications in noninvasive diagnostic tissue spectroscopy.
The standard model used for characterizing fluorescence photon
transport in biological tissue is based on the diffusion approx-
imation. On the premise that the total energy of excitation
and fluorescent photon flows must be conserved, we derive the
widely used diffusion equations in fluorescence spectroscopy
and show that there must be an additional term to account
for the transport of fluorescent photons. The significance of
this additional term in modeling fluorescence spectroscopy in
biological tissue is assessed.

I. INTRODUCTION

Low-power laser radiation induces tissue fluorescence
without tissue damage and thus considered to be a very
versatile tool in the diagnostic fluorescence spectroscopy
with many applications in medicine [1]–[3]. Some example
applications in medicine include the detection of atheroscle-
rosis in the aorta and the coronary artery and dysplasia
in the colon and other tissues [1], [4], diagnosis of early
stages of cancer, measurement of the concentration of var-
ious exogenous agents such as the photosensitizers used in
photodynamic therapy [2] and the detection of dental caries
[1].

A majority of the diagnostic methods in fluorescence spec-
troscopy use empirical algorithms derived from studying a
limited number of specimens and these algorithms ignore the
wealth of biochemical and morphological information of the
tissue [4]. Fluorescence spectra observed from optically thick
tissue is distorted from the intrinsic spectra of individual
fluorescence chromophores and consequently experiments
utilizing optical-fibre probes in the clinical setting often yield
results that are different from those utilizing a laboratory
spectrofluorimeter [4]. Thus, there is a need for better model
which enable us to account for intrinsic features of scattering
in tissue and facilitate the accurate extraction of the informa-
tion of physiochemical composition of tissue. Such a model
will be able to provide biochemical and morphological infor-
mation about tissue pathology for tracking the development
of disease in vivo [4]. These requirements can be met only
if such a model at least incorporates effects such as intrinsic
fluorescence, scattering, absorption, excitation and collection
geometries and the tissue boundary conditions [4].
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Light propagation through tissue is best described by
the photon transport theory [5], which is based on the
principle of energy conservation. Modeling light propagation
through tissue with embedded fluorophores is usually carried
out by applying the diffusion approximation to the photon
transport theory [2], [6]. However, none of the existing
diffusion approximation formalisms systematically considers
the simultaneous conservation of energy in both excitation
and fluorescent beams and thus phenomenologically arrives
at the final equations. The danger in such an approach
is that significant contributing terms may escape from the
formalism owing to mis-judgement, erroneous assumptions
or failed intuition. We show that this is indeed the case with
conventional diffusion approximation used in fluorescence
spectroscopy and supplement the missing terms to make the
coupled equations collectively obey the principle of energy
conservation. To arrive at this result, we derived coupled
photon transport equations for a tissue medium containing
fluorophores. Klose et al. [7], [8] presented a tomographic
reconstruction algorithm for optical molecular imaging of
biological tissue, based on the time-independent (steady
state) photon transport equation. Chang et al. [9], [10]
modeled the migration of excitation and emitted fluorescence
photons using two one-speed photon transport equations. We
used the coupled time-dependent (transient) photon transport
equations to derive the diffusion approximation that describe
the distribution of the excitation light beam and the resulting
fluorescent light scattered through the medium. To our sur-
prise, the systematic derivation leads to an additional term,
which is missing from the conventional usage in fluorescence
spectroscopy. Here we show the physical reasons for the
appearance of this term and the conditions under which we
should retain this additional term to improve the accuracy of
calculations.

II. MODIFIED DIFFUSION MODEL FOR
FLUORESCENCE

Figure 1 shows a schematic diagram of fluorescence
spectroscopy in tissue illustrating a path traced by a photon
undergoing a frequency change due to absorption and re-
emission by a fluorophore. A fluorophore is a substance that
absorbs light and re-emits light of a different frequency with
a time delay. We consider fluorophores that absorb light
of excitation frequency νx and re-emits light of emission
frequency νm with a time delay τ , which is called the fluo-
rescent lifetime. Let σax,tiss and σam,tiss be the absorption
coefficient of tissue at νx and νm, respectively; ϕeff be the
quantum efficiency for emission at νm given excitation at
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νx, σax,fl be the absorption coefficient of fluorophores at
νx and σsx and σsm be the scattering coefficient at νx and
νm, respectively. Our formulation of the photon transport
model for excitation and emission light was based on the
principle of energy conservation. We derived this model by
considering the conservation of the number of photons in an
infinitesimal volume of the interacting tissue medium. This
model consists of two coupled photon transport equations,
each carrying a coupling function that corresponds to the
coupling of excitation frequency to emission frequency of
fluorophores. In the absence of coupling these two equations
reduce to the conventional photon transport equation corre-
sponding to each frequency.

We followed the method presented in [11] to arrive at
the diffusion approximation of this photon transport model,
systematically. The diffusion model thus derived resulted in
the following two diffusion equations:

∂Φx(r, t)

∂t
−Dxc∇2Φx(r, t) + σ0

TxcΦx(r, t) = 0, (1)

∂Φm(r, t)

∂t
−Dmc∇2Φm(r, t) + σ0

TmcΦm(r, t)

− 3DxDm∇2 c

τ
ϕeffσax,fl

∫ t

0

e−(t−t′)/τΦx(r, t
′)dt′︸ ︷︷ ︸

new additional term

(2)

− c

τ
ϕeffσax,fl

∫ t

0

e−(t−t′)/τΦx(r, t
′)dt′ = 0,

where, Dx = 1/(3 (σax,fl + σax,tiss + (1− g)σsx)), Dm =
1/(3 (σam,tiss + (1− g)σsm)), σ0

Tx = (σax,fl + σax,tiss)
and σ0

Tm = σam,tiss with g being the anisotropy factor of
the Henyey-Greenstein phase function [12].

Equation (1) is the same as (4a) of [6]. Equation (2) con-
tains all the four terms in (4b) of [6] plus an additional term
containing the Laplacian of the energy density corresponding
to fluorescence activity. This additional term accounts for
the fluorescence photon transport due to the deviation of
fluorescence photons density at r from the average fluores-
cence density at an infinitesimal neighbourhood surrounding
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Fluorophore

Light source Light detector

Excitation light Fluorescent light

Fig. 1. Schematic diagram of fluorescence spectroscopy in tissue.

r. Hence, this additional term accounts for the transport of
energy density generated by fluorescence photons due to its
gradients. That is, it is a diffusion term corresponding to the
fluorescence photons.

III. NUMERICAL RESULTS AND DISCUSSION

In order to assess the significance of the new term we
will consider the steady state case in which the light source
generates continuous wave excitation. For the steady state
case the diffusion equations (1) and (2) reduce to

−Dx∇2Φx(r) + σ0
TxΦx(r) = 0, (3)

and

−Dm∇2Φm(r) + σ0
TmΦm(r)− ϕeffσax,flΦx(r)

−3DxDmϕeffσax,fl∇2Φx(r) = 0. (4)

From (3) we have

∇2Φx(r) =
1

Dx
σ0
TxΦx(r). (5)

Using (5) in (4) results in

−Dm∇2Φm(r) + σ0
TmΦm(r)

= ϕeffσax,fl

(
1 + 3Dmσ0

Tx

)
Φx(r). (6)

Fig. 2. Fluorescence photon energy density distribution for a line source of
1W power and 0.2mm length at the centre of the left boundary (a) energy
density without the new term and (b) energy density increase due to the
new term.

From (6) it can be deduced that when the term

3Dmσ0
Tx =

σax,fl + σax,tiss

σam,tiss + (1− g)σsm
(7)
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is comparable with 1, the new term provides a significant
contribution to the distribution of the fluorescence photon
energy density, Φm, and cannot be neglected. From (7) we
can see that the fluorophore absorption coefficient has a
linear relationship with the term on its left hand side. The
fluorophore absorption coefficient is linearly proportional to
the fluorophore concentration [2]. Therefore, with increasing
fluorophore concentration the influence of the new term
becomes increasingly significant. From (7) it is evident that
with increasing anisotropy factor the significance of the new
term increases as well. This effect is shown in Fig. 3 and
Fig. 4.

Fig. 3. Variation of the fluorescence photon energy density increase due
to the new term with different values of fluorophore absorption coefficient,
σax,fl (a) σax,fl = 0.5mm−1, (b) σax,fl = 0.6mm−1 and (c) σax,fl =
0.7mm−1.

For the simulation results presented in Fig. 2 to Fig. 4 we
used the values provided in [13] for the optical properties
of human skin in the near infrared wavelength. We have

assumed an average absorption coefficient of fluorophores
of the same order as that of the tissue.

Fig. 4. Variation of the fluorescence photon energy density increase due
to the new term with different values of anisotropy factor, g (a) g = 0.1,
(b) g = 0.5 and (c) g = 0.9.

Fig. 2 shows the fluorescence photon energy density
distribution for a line source of 1W power and 0.2mm length
located at the centre of the left boundary. For this simulation
we have set σax,fl = 0.6mm−1, σax,tiss = 0.5mm−1,
σam,tiss = 0.7mm−1, σsx = σsm = 0.8mm−1, g = 0.9 and
ϕeff was taken to be 0.58 as in [6]. A tissue refractive index
of 1.4 was assumed [14]. Fig. 2(a) shows the fluorescence
photon energy density without the new term and Fig. 2(b)
shows the fluorescence photon energy density increase due
to the new term. Note that the energy density contribution
due to the new term is more than twice the previous value.

Fig. 3 shows the variation of the fluorescence photon
energy density increase due to the new term with different
values of fluorophore absorption coefficient. All the other
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simulation parameters were kept constant at the values used
for Fig. 2 while the fluorophore absorption coefficient was
varied from 0.5mm−1 to 0.7mm−1. It can be concluded from
Fig. 3 that the fluorescence energy density increase due to the
new term increases as the fluorophre concentration increases.

Fig. 4 shows the variation of the fluorescence photon
energy density increase due to the new term with different
values of anisotropy factor, g, of the Henyey-Greenstein
phase function. We kept all the other parameters constant
at the values used for Fig. 2 while the anisotropy factor
was varied from 0.1 to 0.9. It can be seen from Fig. 4 that
the fluorescence photon energy density increase due to the
new term increases as the anisotropy factor increases. When
modeling biological tissue with the Henyey-Greenstein phase
function, the anisotropy factor is usually taken to be around
0.9 due to the highly forward-peaked nature of scattering.
It can be seen from Fig. 4(c) that for this value of the
anisotropy factor, the contribution of the additional term is
quite significant. Therefore, neglecting the additional term
may result in significant errors in fluorescence based imaging
of biological tissue.

IV. CONCLUSIONS
In this paper we presented a modified diffusion approxi-

mation for fluorescence in biological tissue based on a more
accurate photon transport model. Our simulations based on
realistic biological tissue parameters showed that the new
additional term in the modified diffusion model is significant
and cannot be neglected for fluorescence spectroscopy in
medical applications. We also showed that with increasing
uneven fluorophore concentration and increasing anisotropy
factor the significance of this new term increases. Hence
we recommend this revised diffusion model for modeling
fluorescence spectroscopy in biological tissue to prevent
significant errors.
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