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Abstract— We present a segmentation algorithm that allows
optical properties to be extracted from diffuse reflectance hyper-
spectral datasets with a speedup of three orders of magnitude
when compared to current methods. Such data could be used
for the detection of melanoma. The algorithm first performs
dimensionality reduction using principal component analysis,
and then the image is segmented using k-means clustering.
The mean spectrum from each cluster is then calculated and
can be used to extract chemical information. By reducing the
number of spectra to be analyzed, extraction of physiological
information can be achieved three orders of magnitude faster
than methods requiring the analysis of every spectrum in the
hyperspectral dataset. The effect of noise on the ability of the
algorithm to accurately segment images was tested using digital
phantoms, for which the noise level was under the control of the
investigators. The analysis showed a linear relationship between
the level of noise and the smallest difference in scattering that
the algorithm was able to accurately detect and segment. This
finding can be used to determine the maximum amount of
noise in the imaging system that will still allow detection of
the difference in optical properties between non-melanoma and
melanoma.

I. INTRODUCTION

Skin cancer is the most common form of malignancy.
For melanoma skin cancer, early detection is critical to
patient survival: The five-year survival rate for early stage
melanoma is 98%, whereas the five-year survival rate for
late stage melanoma is 16% [1]. Optical techniques offer
a noninvasive alternative to tissue biopsy for determining
disease status [2]. The interaction of light with the lesion
provides information about tissue morphology, function, and
biochemical composition. As these physiological parameters
change with disease progression, optical methods offer a
means to measure that progression noninvasively [3].

Current methods for diffuse reflectance spectroscopy ac-
quire only a single spectrum at a single point, and are
unable to provide spatial information. To overcome the in-
accuracies due to sampling error that arise from single point
measurements, Wang et al. have developed a spectroscopic
imaging system capable of collecting hyperspectral images
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[4]. The resulting images contain individual spectra vectors
collected from thousands of discrete pixel points in the
sample. In a hyperspectral image, each pixel is a single N-
dimensional data point, where the number of dimensions
(N) is equal to the number of spectral bands (the length
of the spectral vector). Multivariate analysis methods can
be used to extract chemical information from the individual
spectra to reconstruct images from the hyperspectral dataset
[5]. Miljkovic et al. have shown that unsupervised machine
learning methods are capable of detecting spectral features;
however, it is unclear which method is most sensitive and
generally applicable [6]. Unsupervised methods have the
advantage of not requiring any knowledge of sample com-
position, but unsupervised methods are unable to provide
quantitative information in terms of biochemical differences
between the spectral classes.

To extract quantitative information from diffuse reflectance
spectra, Rajaram et al. developed a lookup table-based
inverse model [7]. This method relies on a lookup table
(LUT) generated from experimental measurements on tissue-
simulating phantoms with known optical properties. To fit the
measured reflectance spectra and extract optical properties,
they implemented a nonlinear optimization fitting routine.
The average time to fit a single spectrum is approximately
two seconds. While this amount of time is trivial if only a
few spectra are being analyzed, using the same method to
analyze a hyperspectral image containing over 10,000 spectra
would take too long to work as an effective on-site clinical
diagnostic tool.

Numerous other methods have been proposed for the
analysis of hyperspectral images of biological tissue [6], [8],
[9], [10], [11] Techniques involving cluster analysis have
successfully shown that it is possible to segment hyperspec-
tral images into tissue types [12]. More scalable techniques,
such as k-means, provide a rapid method for segmentation
of hyperspectral images [13]. Clustering approaches offer
the advantage of providing mean spectra with low noise for
each cluster, which can then be used to extract quantitative
information.

Dimensionality reduction is another commonly used tech-
nique in hyperspectral image analysis [6], [14]. Dimensional-
ity reduction is the transformation of high-dimensional data
into a meaningful representation of reduced dimensionality.
This facilitates segmentation, classification, and visualization
of high-dimensional data, such as hyperspectral images.
Dimensionality reduction techniques can be described as
either linear or nonlinear. Nonlinear techniques do not rely
on the linearity assumption and can identify more complex
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embeddings of the data in the high-dimensional space. How-
ever, when the number of dimensions (e.g., the number of
spectral bands) is much less than the number of data points
(e.g., the number of pixels), non-linear techniques have a
large computational disadvantage when compared to linear
techniques. In addition, this increase in computational costs
is not accompanied by an improvement in performance [15].

In this work we present an algorithm for the analysis
of diffuse optical reflectance hyperspectral images to detect
skin cancer. The algorithm consists of principal component
analysis (PCA) for dimensionality reduction, followed by k-
means cluster analysis; the mean spectrum from each cluster
is calculated and saved for further analysis. The limitations
and properties of the proposed algorithm are tested using
digital phantoms composed of spectra with known properties
created using lookup table model [7].

II. BACKGROUND

A. Diffuse Reflectance Spectroscopy (DRS)

Diffuse reflectance is a function of the scattering and
absorption properties of tissue, meaning DRS can be used
to acquire information about the tissue morphology and
function. A model-based analysis of diffuse reflectance can
provide quantitative measures of the wavelength-dependent
reduced scattering (µs) and absorption (µa) coefficients [7].
Scattering properties of the tissue can be used to determine
size and density of the primary tissue scatterers, and the
absorption properties of the tissue can be used to determine
physiological parameters such as blood volume fraction
oxygen saturation, blood vessel diameter, and melanin con-
centration. Changes in cellular structure and organization
in the epidermis, changes in the extra-cellular matrix, and
angiogenesis are important hallmarks of progression from
normal skin to cancer. Researchers have used diffuse re-
flectance to optically visualize these changes and diagnose
melanoma [16], [17], [18], [19] and non-melanoma skin
cancers [20].

B. Hyperspectral Imaging

A hyperspectral image (HSI) is an image where each pixel
represents a spectral vector. For example, an image could be
collected using spectral bands with a width of 20nm from
400nm to 700nm. Then each pixel would be a spectrum of
16 wavelength bands. The 16 wavelength bands are called the
image variables [21]. Figure 1 shows a hyperspectral image
composed of 16 different bands. Notice that the hyperspectral
image is actually a stack of grayscale images, with each
grayscale image representing a different spectral band, or
dimension. Each pixel in the image can be thought of as a
16 dimensional data point.

C. Principal Component Analysis (PCA)

The goal of PCA is to find a new set of dimensions that
better captures the variability of the data. The first dimension
is chosen to capture as much variability as possible. The
second dimension is orthogonal to the first and captures
as much of the remaining variability as possible. This can

Fig. 1. Hyperspectral image collected using diffuse reflectance spectro-
scopic imaging. Each pixel in a hyperspectral image is a spectrum.

continue for any number of dimensions up to the original
dimensionality of the data. PCA has several characteristics
that make it ideal for hyperspectral image analysis. First,
it has a computational complexity of O(N3), where N
is the number of dimensions in the original data. In a
hyperspectral image, N is the number of spectral bands.
This is advantageous for hyperspectral image data, where
N is typically much less than the number of data points,
or pixels. Second, most of the variability in hyperspectral
images can be captured in a small number of dimensions,
meaning PCA can result in low dimensional data and it may
be possible to apply techniques that dont work well with
high-dimensional data [15].

Principal components are computed in the following way.
Given a P by N data matrix D, whose P rows are data
objects and N columns are attributes. For a hyperspectral
image, N is the number of spectral bands and P is the
number of pixels. If the data matrix D is preprocessed so
that the mean of each attribute is 0, then we can calculate
the covariance matrix S, where S = DDT . Let U be
the matrix of eigenvectors of S. These eigenvectors are
ordered such that the ith eigenvector corresponds to the ith

largest eigenvalue. The data matrix D′ = DU is the set of
transformed data, where the new attributes are the principal
components, which are linear combinations of the original
attributes. The dimensionality of the dataset can then be
reduced by retaining only the first few dimensions of the
transformed dataset.

D. K-Means Cluster Analysis

K-means is a clustering technique that attempts to find a
user-specified number of clusters (K), which are represented
by their centroids. The k-means technique works by first
choosing K initial centroids, where K is a user specified
parameter. Each point is then assigned to the closest centroid,
and each collection of points assigned to a centroid is a
cluster. The centroid of each cluster is then recalculated.
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Reassignment of points and centroid updating is repeated
until no point changes clusters [22].

III. METHODS AND MATERIALS

A. Algorithm

An algorithm involving dimensionality reduction and clus-
tering is used to analyze the hyperspectral datasets. First the
dataset is loaded into MATLAB as a hyperspectral data cube.
Next, dimensionality reduction is performed by using PCA.
Then, the dataset is segmented using k-means clustering.
Lastly, the mean spectra from each cluster are calculated
and saved for further analysis.

Dimensionality reduction was performed using PCA. The
first two principal components are then retained for further
analysis. More than 95% variance can be captured in the first
two principal components. Skala et al. have shown that the
first principal component of diffuse reflectance spectroscopy
data of epithelial neoplasias is highly correlated with the
reduced scattering coefficient of the tissue, and the second
principal component is correlated with absorption properties
of the tissue [23].

Before clustering, the two principal components that are
retained are normalized to have a mean of one. This is
done to ensure each principal component has equal in-
fluence on the clustering results. After normalization, k-
means clustering is performed, with each pixel representing
a two dimensional data point composed of the first and
second principal components. The number of clusters should
be based on knowledge of the tissue being imaged. This
algorithm was analyzed using digital phantoms containing
two different tissue types, so for our purposes, two clusters
were formed. The two initial cluster centers are chosen
randomly from data points within the image. Clustering is
performed 3 separate times, and the clustering that gives the
smallest sum of within cluster variances is used for further
analysis.

After clustering, the mean cluster spectra can be calcu-
lated. This is done by taking the mean of all spectra from the
original data set within each cluster. Because many spectra
are averaged, much of the noise within each individual
spectrum is cancelled out and we are left with low-noise
mean cluster spectra that can be related to biochemical
properties of tissue areas. These properties can be calculated
using the method described by Rajaram et al. [7] and the
computational time is no longer an issue since the number
of spectra to analyze is reduced by over three orders of
magnitude.

B. Algorithm Analysis

Figure 2 describes the process used to determine the
relationship between the amount of noise in the hyper-
spectral images and the minimum difference in scattering
that the algorithm is able to detect without misclassifying
more than 5% of the pixels in the segmented image. The
pixel misclassification percentage is calculated by comparing
the segmentation results after the addition of noise to the
ideal segmentation results. The number of pixels that differ

between the two segmented images is then divided by the
total number of pixels. When more than 5% of the pixels are
misclassified, it is no longer possible to accurately calculate
the optical properties based on the mean spectra from each
cluster.

A lookup table (LUT) was used to generate spectra. The
LUT was created by measuring the functional form of the
reflectance using tissue phantoms with known optical prop-
erties. These phantoms were fabricated using polystyrene
microspheres and India ink dissolved in water to simulate
scattering and absorption respectively [7]. Mie theory was
used to calculate µs of the tissue phantoms and µa was
measured using a spectrophotometer. A matrix (4x6) of
24 tissue phantoms with varying scattering and absorption
parameters was created. The probe was placed in contact
with the surface of the tissue phantoms, and white-light
spectra from the phantoms were recorded. Reflectance was
calculated by dividing white-light intensity measured from
the phantom by the intensity from a reflectance standard.
The sparse matrix was then interpolated to create a grid of
uniformly spaced data points of s and a to obtain a LUT for
diffuse reflectance spectra.

A hyperspectral image (100x100 pixels) was simulated
from the spectra generated using the forward model created.
Two different spectra were used, with one having a higher
scattering coefficient than the other. A circular area with a
radius of 25 pixels contained the spectrum with the higher
scattering coefficient, and the rest of the image contained the
other spectrum. After creation of the hyperspectral image,
noise from a normal distribution was added to the image.
The main advantage of using digital phantoms is that the
level of noise could be selected by the investigator.

Figure 2 outlines the process used to determine the rela-
tionship between the amount of noise in the data and the min-
imum difference between spectra that the algorithm is able to
detect without misclassifying more than 5% of the pixels in
the segmented image. This was done by creating 40 different
phantoms where the difference in scattering between the two
regions ranged from 0.05mm−1 to 2.00mm−1. Noise from
a normal distribution of mean zero was then added to the
images starting with a standard deviation of 0.001 and the
noise was increased in increments of 0.001 until more than
5% of the pixels in the segmented image were misclassified.
For each level of scattering difference and noise, the process
was repeated 10 times and the percentage of misclassified
pixels was averaged. This was necessary to account for the
addition of random noise.

IV. RESULTS AND DISCUSSION

This paper describes an algorithm for the segmentation
of diffuse reflectance hyperspectral datasets with noise. The
algorithm is able to rapidly segment the data into similar
clusters and is also robust to noise. The algorithm segments
the hyperspectral images by first reducing the number of
dimensions with PCA and then clustering using K-Means
clustering.
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Fig. 2. Flowchart describing the process used to determine the maximum
amount of noise that still allows for an accurate segmentation.

Digital phantoms were created and noise was added to
determine the effect of noise on the ability of the algorithm
to distinguish between tissue types. The analysis showed
a linear relationship between the amount of noise in the
images and the minimum detectable difference in scattering
between the two tissue segments. It has been shown that the
difference in µs between normal and cancerous human skin
in the visible range is approximately 0.15 [24]. We can use
this information and our findings to determine the maximum
level of noise in the data that will still allow the detection
of skin cancer.

The proposed algorithm is able to decrease the time to
extract chemical information from the spectra by three orders
of magnitude compared to methods that analyze every spec-
trum in the hyperspectral dataset. This is done by reducing
the number of spectra to be fitted, and allows results to be
obtained in a few seconds. Another advantage is that the
effect of noise in the individual spectra from the original
dataset is greatly reduced by analyzing the average spectrum
from each cluster. By averaging the thousands of spectra
within each cluster, most of the noise is eliminated.

In future work, we will investigate this algorithm on real
datasets containing melanocytic regions. Segmented images
will be created and the mean spectra from each cluster in the
segmented image will be analyzed using an inverse model
lookup table approach. This will allow the extraction of
optical properties which can be used to quantify relevant
physiological parameters such as blood volume fractions,
scattering, and hemoglobin concentration. With the collection
of a large dataset, these parameters can be used to develop
a classifier that will assign a probability of disease to each
cluster in the segmented image.
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