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Abstract— Colonoscopy is the reference medical examination
for the diagnosis and treatment of neoplasia in gastroenterology.
During the examination, the expert explores the colon cavity
with a gastroscope in order to detect neoplasias - abnormal
growths of tissue - and to diagnose which ones could be malig-
nant. The Paris classification of superficial neoplastic lesions is
the gold standard set of criteria for this type of diagnosis. One
of the major criteria is the size. However, this is tremendously
difficult to accurately estimate from images. This is because the
absolute scale of the observed tissues is not directly conveyed
in the 2D endoscopic image.

We propose an image-based method to estimate the size
of neoplasias. The core idea is to combine Depth-From-
Focus (DFF) and Depth-From-Defocus (DFD). This allows us
to recover the absolute scale by automatically detecting the
blur/unblur breakpoint while the expert pulls the gastroscope
away from a neoplasia. Our method is passive: it uses the image
data only and thus does not require hardware modification of
the gastroscope. We report promising experimental results on
phantom and patient datasets.

I. INTRODUCTION

Colorectal cancer is the fourth cause of death by cancer
according to the World Health Organization. Most colorectal
cancer cases however are preventable. Massive screening
campaigns facilitate preventive surveillance. The improve-
ment of medical techniques facilitates early diagnosis and
treatment of colorectal diseases. The diagnosis of neoplasia
(an abnormal growth of tissue) relies on a gold standard
defined in the Paris classification of superficial neoplastic
lesions [12]. Several criteria such as texture and shape allow
one to objectively evaluate a neoplasia’s potential malignant
decline. Amongst these criteria, a neoplasia’s size (area and
volume) is particularly important to the diagnosis. It directly
influences the decision of resection.

Non-invasive diagnosis examinations can be classified
into two categories: CT-colonography (also called ‘virtual
colonoscopy’) and capsule endoscopy. CT-colonography is
mainly used as a preliminary diagnosis examination. It is
based on scanning. It allows one to browse a 3D reconstruc-
tion of the colon cavity and thus to measure the size of the
neoplastic lesions. The capsule allows for the acquisition of a
video sequence inside the colon cavity but is not controllable
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and requires time-consuming work of analysis in order to
ensure that no lesion is overlooked.

Colonoscopy is a minimally invasive interventional tech-
nique. It is now the reference medical examination for
diagnosis and treatment of colon diseases [6]. Its main
drawback is the loss of the depth information preventing
one from directly estimating the size of neoplasias. Most
passive 3D reconstruction techniques suffer from a scale
ambiguity [4]. Active techniques such as electromagnetic
tracking or structured lighting resolve this ambiguity but
require modifying the gastroscope’s hardware.

We propose to estimate the size of neoplasias using Depth-
From-Focus (DFF) and Depth-From-Defocus (DFD). These
passive methods estimate the amount of blur in images
to infer the scene depth. Assuming that a neoplasia is
frontoparallel to the gastroscope’s tip we can further infer
its area. Our experimental results on a phantom model
and on patient datasets show promising results. The order
of accuracy matches the requirement of gastroenterological
experts for the diagnosis of neoplastic lesions. Section II
presents a state of the art on DFF and DFD. Section III gives
the optical modeling of the colonoscope and defines a model
for blur estimation. Section IV proposes a clinical protocol
to apply our method. Finally, section V presents the results
obtained with the new proposed method for estimating the
size of neoplastic lesions.

II. STATE OF THE ART

DFF, also called ‘software focus’, consists in taking a
sequence of images by controlling camera parameters such
as the depth of field. The goal is to define the best focused
points in each image [9]. The main drawback of DFF is the
requirement of a large set of images and an accurate control
of camera parameters. DFD techniques were introduced in
[10] with the aim of estimating a reliable depth map. They
are based on the estimation of the amount of defocus,
generally between two images of the same scene taken at
a distance d with different camera parameters. Both require
an accurate modeling of the blur process.

We now review blur estimation which is a keypoint of
DFD and DFF methods. Blur estimation approaches can
be classified in three categories: frequency domain, spatial
domain and statistical approaches. All of these require a
calibration stage in order to define an absolute depth map.
Frequency domain approaches use the Fourier transform
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and require at least two images [10]. These methods are
global and do not allow for the computation of an accurate
depth map. Various space-frequency approaches have been
proposed to overcome this problem [8]. However, these
techniques trade-off between frequency and spatial accuracy.
Early spatial domain approaches rely on the study of sharp
edges to compute local degrees of defocusing [10]. A spatial
convolution and deconvolution transform (STM) [13] can
be used for autofocusing. More general DFD by diffusion
methods based on the well-known heat diffusion equations
also exists [3]. This approach takes into account the spatially
varying nature of blur. A global DFD technique based on
these approaches, for a camera whose internal camera param-
eters are fixed, exists [14]. Statistical approaches use Markov
Random Fields for modeling blur in images [11]. Both of
these blur estimation approaches rely on strong assumptions
(presence of edge, Lambertian reflectance of surfaces) and
are sensitive to changing illumination conditions.

Colonoscopy images present specific difficulties due to
the nature of the explored environment (such as the com-
plex specular reflectance of biological tissues [5]) and the
characteristics of the mono-focal optical system. In our
work, we consider a video in order to robustly estimate the
depth of a Region of Interest (ROI) by combining DFF and
DFD. Unlike DFD, our approach does not requires one to
actively control the parameters of the camera displacement
[15]. We propose instead to estimate blur at each frame
of the input video. In our current implementation, the ROI
correspondence is manually established between the frames.
We validated our approach experimentally and obtained
promising results.

III. SINGLE DEPTH ESTIMATION

A. Geometrical optics modeling (GOM)

Consider a point p at a distance d from a thin lens with
focal length f that models the optical system of the camera.
The in-focus image point must be at a distance s such that:
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s
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If the image sensor is not at the same location as the in-focus
plane but at a distance e of the lens, the image of a point
becomes a spot, called circle of confusion (figure 1). The
radius R of this spot is given by the law of similar triangles
(2) and depends on the radius r of the lens:

R(d) = r| e
f
− e

d
− 1| (2)

B. Physical optics modeling (POM)

Considering the depth of field of a colonoscope and the di-
ameter of the colon cavity, we must use a physical modeling
to explain the effect of diffraction. In other words, the im-
pulsional response of the optical system called ‘Point Spread
Function’ (PSF) has to be carefully taken into account.
However, physically modeling a camera’s optical system is
a hard task because of the various components which are
required to acquire an image. Diffraction effects due to the

aperture’s shape, the lenses as well as sensor integration and
sampling require an accurate calibration process. Advanced
PSF modeling showed that the generalized Gaussian is a
suitable model [2]. It encompasses the classical pillbox and
2D Gaussian models. The generalized Gaussian is particu-
larly efficient at modeling the Edge Spread Function (ESF;
extention of the PSF to edges). However, a fine regularized
numerical differentiation is required. It has been experimen-
tally observed [10] that, considering a polychromatic light,
the PSF could be approximated by a 2D isotropic Gaussian.
Our approach relies on this standard assumption generally
accepted in DFD and DFF. An observed ROI Id is expressed
as the convolution of the corresponding focused ROI Iif with
the 2D isotropic Gaussian PSF gσs

with variance σ2
s as:

Id(x, y) = Iif ∗ gσs
(x, y) (3)

where σs is proportional to the distance from the camera to
the observed ROI [10]. In order to combine both geometrical
and physical modeling of the PSF, a simple model based only
on the thin lens equation is considered and equation (2) can
be rewritten in the spatial domain as:

σs(d) ∝ R(d) + µd (4)

Parameter µd represents the width of the PSF profil.

Fig. 1. Image formation by a thin lens: with GOM the image of a point
(Ad0 ) is a point if Ad0 lies on the in-focus plane, but is otherwise a spot.
With POM these patterns are convolved by the PSF of the optical system.

C. Model fitting on optical blur

We propose to use a video to robustly estimate the depth
of a ROI and later estimate its size assuming that this
ROI is planar and frontoparallel to the distal end of the
gastroscope. This strong assumption allows us to easily
derive a measurement thanks to a preoperative calibration
stage (Section IV) but could lead to the underestimation
of tumor size (SectionV). As the optical system of most
colonoscopes is fixed, the closest in-focus frame gives the
depth. Our approach relies on a coherent video sequence
corresponding to a push or pull back of the colonoscope’s
tip towards the ROI. The PSF measurement used for this
study relies on [16] (Section IV.A). The PSF measurement
is done in the frequential domain by studying the effect of
reblurring salient features. The inverse of the generic model
(4) can thus be fitted to the PSF measures, by solving the
following optimisation problem:

min
p∈R6

n∑
di=1

(η(di;p)− σf (di))2 (5)
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where di is the frame number of the video sequence linked
to the distance by the coherent motion of the gastroscope.
The parametric generic model (with p = {pj}1≤j≤6) derives
from (4) and is defined by:

η(d;p) =
p1

|p2 − p3
d−p6 | − p4(d− p6)

+ p5 (6)

The maximum of the fitted model corresponds to the mini-
mum σs of the PSF (the in-focus plane). The initialization of
model parameters, which is critical, is given by the following
relationships (assuming a pull-back of the colonoscope):

(i) p5 and p6 relate respectively to the value at the origin
and the amplitude of the data to fit;

(ii) max(σf (di)) is at a singular point as: p2 = p3
d−p6 ;

(iii) lim
d→+∞

σf (di)− p5 =
p1

|p2|+ p4(p5 − p6)
;

(iv) equation (6) can be rearranged and differentiated lead-
ing to:

lim
d→+∞

dU

dD
= p4 Where U =

σf−p6
p1

and D = d− p6.

Fig. 2. Validation of the PSF model: the light gray curve represents the
estimate of the size in frequencie of the PSF σf of varying controlled depths.
The dark gray curve is the model.

D. Experimental validation of the PSF model

A first set of experiments was done in a laboratory with
an Olympus R© CV-160 colonoscope. The distal end of the
colonoscope was fixed to the support of a motorized linear
stage and an object was placed in contact with it. The
motorized stage allowed us to control the pull back of the
colonoscope from the distance d = 0 to d = 100 mm
which is the suitable range of distances in colonoscopy.
Experiments showed that the proposed model suitably fits
the PSF estimation. Different textured objects (chessboard
pattern, red pepper . . . ) were used in order to test the
modeling. Experiments have lead to similar results with a
single optimum depth. Experiments (section V) were also
carried out in a preoperative context with two differents
Olympus R© CV-180 colonoscopes. They have been realized
by acquiring images of a chessboard pattern at predefined
distance (with a step of 5 mm). The results validate the
proposed modeling (figure 3) despite a rough calibration.

IV. CLINICAL PROTOCOL AND IMPLEMENTATION
DETAILS

A. PSF estimation method and calibration

The estimation of the standard deviation (STD) of the PSF
was indirectly obtained thanks to the method proposed in
[16]. This method relies on the Gaussian reblurring of edges
and relies on the fact that a blurred edge is inherently less
sensitive to low-pass filtering than a sharp edge. The gradient
ratio between the input and reblurred images allows us to
evaluate the STD of the PSF.

A preoperative calibration stage is required in order to
obtain the absolute depth of a ROI. This calibration aims
at obtaining a curve relating the depth of an object and the
estimation of the STD of the PSF (figure 2). The maximum
of this curve corresponds to the distance of the object plane
in focus. As part of this study, an ideal calibration process
was done for laboratory experiments using a motorized linear
stage. However, in a medical context, such an accurate
calibration is not suitable and a rough calibration was done
in preoperative conditions by acquiring a set of images at
different depths.

B. In-vivo protocol

Similar to the experiments presented in the previous sec-
tions, a peroperative protocol was defined. The distal end
of the gastroscope is firstly far away from a neoplasia and
progressively approched to touch it. In order to avoid issues
due to distortion [1], the ROI was imaged in the center of
the frames. The gastroscope has been moved slowly in order
to avoid movement blur which could lead to bias in results.
Several studies address the problem of motion blur detection
[7] and should be considered to improve the robustness of
the proposed approach. This study assumes no motion blur
in order to focus on the accuracy of the depth estimation.
Moreover the video treatment was realized of line.

V. EXPERIMENTAL RESULTS

In order to validate the previously exposed method, two
datasets were used. Laboratory experiments were carried
out with an Olympus R© CV-160 colonoscope on a phantom
model and real colonoscopy sequences were also evaluated
with two Olympus R© CV-180 colonoscopes.

A. Results on ground truth dataset

The phantom model is composed of a tube within which
a colon pig has been inserted and flattened against the
cavity wall. Pig colons are frequently used by experts for
training purposes due to their similarity to human colon.
Two marbles of diameter 5.75 mm (blue marble) and 15.54
mm (transparent marble) were alternatively placed inside the
colon cavity. A motorized linear stage was used in order to
control the pull-back of the distal end of the colonoscope.
Figure 3 shows the result for these two cases. The blurring
model proposed fits the measurements of the PSF STD.
Moreover, a singular maximum corresponding to the best
in-focus frame of the video sequence allows us to compute
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the absolute size of the marble. The sizes are underestimated
as expected due to our initial assumptions.
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Fig. 3. Measurement of object size with controlled depths. The black curves
are the estimate and modeling of the size in frequence of the PSF with a
transparent marble object. The gray curves are the estimate and modeling
with a blue object. The maximums of the two modelings are on the same
point, because the same colonoscope was used.

B. Results on real datasets

Three real colonoscopy sequences have been acquired by
an expert. In order to estimate the robustness of the proposed
method, colonoscopy forceps was placed in contact with the
observed polyp. This technique is frequently used by experts
for size estimation of lesions. Tumor sizes are underestimated
due to the initial assumptions but the order of accuracy
matches the needs of experts. The model, which fits the
measurement of the PSF STD, allows us to prevent from
possible outliers due to changing illumination condition. The
robustness of measurements could be improved thanks to
an advanced calibration step. A fine tracking method of the
tumor inside the video sequence as well as a local estimation
of the PSF STD have also to be considered.

Fig. 4. Measurement of polyp size in in vivo sequences. The first row
represents the images of 3 real datasetsets in the plane of focus. The second
row shows the images which permit to compute the real size.

C. Discussion

The order of accuracy matches the requirement of gas-
troenterological experts for the diagnosis of neoplastic le-
sions. Apart from the initial assumptions (plane tumor
frontoparallel to the camera), the results obtained with our
method are also underestimated because of the significant
barrel distortion effect of colonoscopic optical system. Re-
moving such a distortion requires a more accurate calibration

process. The changing illumination conditions, and more
particularly the saturation due to the non Lambertian re-
flectance of biological tissues, have an important influence
on the blur estimation. The use of a coherent colonoscopic
sequence which could be fitted to the blur model allows us,
nevertheless, to estimation the size of neoplasias.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a method to estimate the size of
neoplasias in-vivo. Our method combines Depth-from-Focus
and Depth-from-Defocus. It detects the closest in-focus plane
and infers its distance from the colonoscope’s tip using a pre-
calibration step. The size of a neoplasia is then computed
under the assumption that it is frontoparallel to the colono-
scope. Our experimental results demonstrate the feasibility
of this approach. Quantitative measurements compared to
groundtruth for both lab and in-vivo cases reveal a slight
systematic underestimation of size. Our future work will
address local blur estimation so as to raise the frontoparallel
assumption.
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