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Abstract— In a telemedicine environment for retinopathy
screening, a quality check is needed on initial input images
to ensure sufficient clarity for proper diagnosis. This is true
whether the system uses human screeners or automated soft-
ware for diagnosis. We present a method for the detection of
flash artifacts found in retina images. We have collected a set of
retina fundus imagery from February 2009 to August 2011 from
several clinics in the mid-South region of the USA as part of
a telemedical project. These images have been screened with a
quality check that sometimes omits specific flash artifacts, which
can be detrimental for automated detection of retina anomalies.
A multi-step method for detecting flash artifacts in the center
area of the retina was created by combining characteristic
colorimetric information and morphological pattern matching.
The flash detection was tested on a dataset of 5218 images rep-
resentative of the population. The system achieved a sensitivity
of 96.54% and specificity of 70.16% for the detection of the
flash artifacts. The flash artifact detection can serve as a useful
tool in quality screening of retina images in a telemedicine
network. The detection can be expected to improve automated
detection by either providing special handling for these images
in combination with a flash mitigation or removal method.

I. INTRODUCTION

Since 2005 our team is pursuing the development of the
Telehealth Retinal Image Analysis and Diagnosis (TRIAD)
network [1]. This system, installed in walk-in clinics in
the Mid-South of the United States of America, provides
on-site assistance for image acquisition and pre-screening
of diabetic retinopathy and associated conditions. Retinal
images captured with fundus cameras go through (1) an
image quality check to validate the data acquisition phase
[2], (2) various feature extraction algorithms to identify and
describe morphological characteristics associated with retinal
abnormalities [3]–[5]. and provide real-time diagnostics, and
finally (3) the image processing results and disease state are
archived for later comparison with a diagnosis by an ophthal-
mologist. The automated diagnosis system currently does not
replace screening by an eye specialist. We are investigating
additional pre-processing techniques to increase our systems
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performance, and one problem we face is the presence of
illumination artifacts that may cause flaws in our decision
system. In this paper we present an original technique to
find and delineate artifacts that were not detected by our
image quality check algorithm. The paper is organized as
follow: first we explain what flash artifacts are and how they
affect the image, then we present our multi-phase approach
to detect them, and finally we provide performance results.

II. FLASH ARTIFACTS

In general, artifacts commonly found in fundus images
result from (1) foreign objects present in the field-of-view,
(2) motion blur, (3) out-of-focus effect, and/or (4) extreme
illumination conditions. In all of these cases, the whole
image is usually affected and therefore it is trivial to detect
them. As part of the TRIAD framework, we are always
processing newly captured images with an image quality
check algorithm before releasing them for further processing.
In general, most of these artifacts are detected early in
the process. However, there are also illumination artifacts
affecting the image locally that cannot be detected with
a global evaluation of the images. These artifacts can be
located anywhere in the images, but a common one is an
annular artifact in the middle of the fundus images, which
often corresponds to the macula region. Annular artifacts
are characteristic of the acquisition system configuration
which combines the fundus camera and an annular source
to ensure adequate illumination of the retina. Depending
on changing combinations of data acquisition parameters
(focus, exposure, field-of-view, etc.) and retinal pigmentation
characteristics, these artifacts of varying intensity strengths
appear superimposed on the fundus images, changing the
local topography and to some extent are impacting the ability
to analyze accurately the retina. To illustrate the annular
illumination patterns we want to detect, an example of four

Fig. 1. Examples of flash artifacts: all four images are altered by an annular
flash artifact. One can see that the intensity of the artifact combined with
the retina pigmentation produces visible differences. Also, sometimes the
annular artifact is not visible to the eye (see image on the far right) but
its presence, detected by image processing algorithms, can impact detection
and/or classification results.
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central regions cropped out from larger images are given in
Figure 1.

III. METHOD

In this section we describe the workflow of our image
processing approach which includes contrast enhancement,
annular artifact detection, and artifact delineation. At this
stage it is important to note that we are only interested in
detecting the central annular flash artifact or ring, therefore
in the following we will be working only with pre-defined
regions-of-interest. Going though the image database and
only considering images where the ring was clearly visible,
we noticed that size and shape of the artifact were fairly
consistent and that the center of the ring was only slightly
shifted from the center of the image. Therefore we have made
the empirical choice to define our region-of-interest (ROI) as
a 256×256 pixels area centered in the middle of the image.

A. Contrast enhancement

Fundus images are color images in the sRGB color space
presenting variations in terms of hue, intensity, and con-
trast resulting from a combination of patient specific retina
pigmentation (often associated with the patients ethnicity)
and quantity of light entering the eyeball (associated with
the pupil dilation diameter). Exploiting these particularities,
segmentation techniques analyze images projected from the
sRGB color space into another color space (HSV or CIE
L*C*h* for example) or are using dimension reduction tech-
niques such as PCA and LDA to increase the data variability
in order to help with feature extraction and pixel classifica-
tion [6]. Unfortunately, for our application these approaches
are extremely unstable due to the important variations in
terms of intensity and color of the artifact pattern, and
classification results were unreliable. Consequently instead
of using projection techniques for classification purpose,
we used them to create contrast enhanced images suitable
to perform topographic pattern matching. Amongst all the
techniques we have tested, we identified two complementary
methods to extract interesting contrast enhanced images of
flash artifacts. Looking closely at the initial color ROIs,
one notices that the ring is mainly visible in the green
and blue channel and almost invisible in the red channel
(see Figure 2). We have focused our approach on the blue
channel because the ring visibility was more consistent

Fig. 2. Example image and channels: (left) input color image, (R,G,B
images) normalized independent channels. We can see that the ring is not
visible in the red channel but is visible in the blue channel and also in
the green channel. It is actually a special case to show to illustrate which
channel is mainly impacted by the flash artifact and also to point out that
even in the best case scenario, the blue channel has more potential than the
green channel.

in that channel. Therefore, our first image transformation
consists of estimating the “blueness” of the color image,
which is almost equivalent to computing the normalized
RGB color channel except we maximize the blue channel
response by imposing I(x, y, blue) = 1 for the denominator
as formulated with Equation 1:

B(x, y) =
I(x, y, blue)2

I(x, y, red)2 + I(x, y, green)2 + 1
(1)

where B is the contrast enhanced image created based
on blueness, I is the captured image, (x, y) is the two-
dimensional image coordinate, and {red, green, blue} are
the color channels. Results obtained for five images from the
database are presented Figure 2, second column. The second
transformation converts a color image into a grayscale image
while preserving hue information:

G(x, y) = Iω(x, y) + λCω(x, y) (2)

where G is the grayscale contrast enhanced image, Iω is
the captured image represented with weighted components,
(x, y) is the two-dimensional image coordinate, Cω is the
weighted chrominance component, and λ is the amount of
chrominance applied to the intensity value. The complete
mathematical formulation of this transformation is complex,
therefore we strongly encourage interested readers to refer to

Fig. 3. Contrast enhancement results: (from left to right) input im-
ages, contrast enhancement using Equation 1, contrast enhancement using
Equation 2, combination of both result for improved image enhancement.
Contrast enhanced images (values ranging from 0 to 1 on a single channel)
are displayed with a jet colormap for visualization purpose.
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[7] for further details. With this transformation, one obtains
a grayscale patchwork of isoluminant colors as one can see
Figure 3, third column. Independently, both methods have
average performances. However once combined together
by computing the direct product between both results, the
contrast enhanced images were visually better in the sense
that they were showing a clear difference between the area
impacted by the annular artifact and the rest of the image,
see Figure 3, fourth column.

B. Ring detection

The images presented in Figure 3 show various morpho-
logical characteristics of the images present in our database:
(1) ring artifact has a diameter approximately equal to half
the size of the ROI; (2) its position can be slightly shifted
from the center of the ROI; (2) the thickness is not constant
(thin if the artefact projection is focused on the retina, wide
if it is out of focus). An obvious solution is to apply a
Hough transform with a circle as a primitive to find all
circles present in the image [8], and select only two that
best delineate the inside and outside of the ring. However,
the success of the operator greatly depends on the sharpness
of the artifact and on its intensity, two conditions that are not
robust for all the images. Therefore a more suitable approach
is to locate approximately the ring position with an image
registration technique based on image cross-correlation [9].
By computing the cross-correlation between a reference im-
age and the fundus images, one obtains a peak corresponding
to the maximal correlation. The location of this peak is
then used to estimate the 2D rigid translation between both
images. Our reference image is a synthetic binary image the
same size as the ROI, with a black background and a white
ring on its center. The ring diameter is about half the size
of the ROI and its thickness is equal to 5% of the diameter.
In order to more accurately represent the smoothed edges of
the ring a Gaussian filter (kernel size = 15 pixels) is applied
to the image. There is a unique reference image to process
the entire database, since the objective of this registration
phase is not to detect the artifact accuratly but to detect if
the ring is present and approximate its location in the ROI.
The exact detection of all pixels part of the artifact is done
in the following step. Figure 4 gives examples of registration
results.

C. Delineation of the flash artifact

The ring detection algorithm gives a good approximation
of the ring position. However, since it is a rigid pattern
matching method, any changes in scaling or ring thickness
will not be detected. Our first approaches to improve the
artifact delineation were based on region growing algorithms
(connected component, snake, etc.) and probabilistic methods
[8], but none of them was stable, due to the lack of energy
and the SNR of the artifact pattern area. Therefore we opted
for a morphological approach widely used in 3D imaging
called Iterative Closest Point (ICP) algorithm [10] which
aims to find the transformation between a point cloud and
a reference surface, respectively in our case between the

detected ring and the contrast enhanced image. The original
ICP formulation is a rigid transformation that finds optimal
rotation and translation, therefore there will be minimal im-
provements in comparison to the previous cross-correlation
approach. However, by using finite difference methods, it is
also possible to solve for resize and shear [11]. Both the
shifted reference image and the input image are converted
into two sets of 3D points by considering the intensity
values as z coordinates, the (x, y) pairs being the pixels
coordinates in each image. It is important to notice that only
non zero element of the reference image will be converted
in a 3D point cloud, and that a pre-positioned reference

Fig. 4. Examples of ring detection results: (top) input images, (middle)
contrast enhanced image showing computed with the method presented in
sub-section III-A, (bottom) input image with the mask approximating the
position of the detected ring overlaid on it. Notice that the ring is not always
located in the centre and that no ring was detected for the last image because
none was present.

Fig. 5. Result of the flash artifact delineation: (top) input images, (middle)
contrast enhanced image computed with the method presented in sub-
section III-A; the green ellipses correspond to the inner and outer limit
of the detected ring after ICP, (bottom) input image with overlaid on it
the initial initial approximation of the ring (white) and in green the final
delineated area obtained after mesh to mesh fitting using ICP.
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image is required since the ICP algorithm needs a good
starting point to avoid being trapped in a local minima. By
applying the ICP algorithm, the reference image of the ring
will slowly fit to the artifact pattern and cover it, giving
a better approximation of the area impacted by the flash
artifact. This fitting phase is not critical in our process of
identifying if a ring artifact if present or not. However it is
an intermediary step needed prior to any local analysis of
the detected area and it also justify our approach toward the
next phase of this research.

IV. EXPERIMENT

A. Dataset

Our dataset includes 5,218 retina fundus images collected
from February 2009 to August 2011 from several clinics
in the mid-South region of the USA as part the TRIAD
telemedical project. The images represented both healthy and
abnormal retinas and have color variations covering the nor-
mal pigmentation spectrum found in the patient population,
which is approximately 70% African American and 30%
Caucasian.

B. Performance

We applied our techniques to the entire database, recorded
all intermediary results and validated manually the ring
artifact detection and delineation results. For this purpose
we use a GUI showing the original image, the contrast
enhanced image, and having two selectors to tag each image
with two labels: first, the visible presence of the ring was
identified as not present, not visible, barely visible or visible;
second, the accuracy of the detection was arbitrary qualified
as correct if the detected area was (1) centered on the ring,
and (2) covering most of the ring, otherwise it was marked
as incorrect. If the ring was not visible in the original
image, the difference between not present and not visible
was made by using the contrast enhanced image; a ring not
visible in the contrast enhanced image was considered as not
present. The difference between barely visible and visible
was subjective and based on sharpness appreciation. Images
were displayed on a calibrated LCD screen with excellent
colorimetric accuracy to optimize visual validation of the
results. The compiled results are reported in Table I:

TABLE I
PERFORMANCE RESULTS OF OUR FLASH ARTIFACT DETECTOR

Not present Not visible Barely visible Visible

Ratios 25.53% 37.72% 35.41% 1.33%

Correct 90.94% 83.25% 90.20% 93.33%
Incorrect 9.06% 16.75 % 9.80% 6.67%

Sensitivity 96.54%
Specificity 70.16%

As one can see, the sensitivity of our approach is excellent
but the specificity is average. About 75% of our images
present a ring artifact. In those images, a ring artifact was
detected each time and the incorrect rate corresponds to the

inaccuracy in delineating the impacted area. For the remain-
ing 25% of the images, the 9.06% error rate corresponds
to the detection of a ring where none was present. This
usually happened when the contrast enhanced image shows
a large area that can attract the ring pattern used in the cross-
correlation phase, therefore implying the presence of a ring.
However, in future work, we expect to reduce this error rate,
therefore improving the specificity, with a local colorimetric
analysis.

V. CONCLUSION
We proposed a multi-steps morphological method to detect

and to delineate annular flash artifacts located in the central
region of fundus images. We justify our choice to use the
combination of a colorimetric analysis and a morphological
analysis instead of a usual probabilistic approach. We applied
our method to a fairly large image database and obtained
promising results, that will serve as basis for a next phase
of flash artifact mitigation or local dedicated morphological
analysis of the retina. In addition, the impact of the flash
detection on automated screening performance will be eval-
uated in the near future.
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