
  

 

Abstract— Manual measurements of small changes in retinal 

vascular diameter are slow and may be subject to considerable 

observer-related biases. Among the conventional automatic 

methods the sliding linear regression filter (SLRF) 

demonstrates the least scattered and most repeatable 

coefficients. For optimal performance it relies on the choice of 

the correct filter scale for different vessel sizes.  A small scale 

extracts fine details at the expense noise sensitivity, while large 

scales have poor edge localization. Here we use auto scale phase 

congruency to select the filter scales with fuzzy weighting to 

reduce noise, and L1 regularization for edge smoothing. Our 

method uses a one dimensional analysis normal to the vessel 

and so is faster than the 2D phase congruency. In 65 vessels 

randomly selected from 20 images the proposed method 

showed better repeatability and over three times less scattering 

than conventional SLRF. 

I. INTRODUCTION 

T has been shown that changes in retinal vessel diameter 

are an important sign for diseases such as hypertension, 

arteriosclerosis and diabetes [1-3]. Manual quantification 

of retinal vascular changes is difficult for several reasons: 

the low image contrast between vessels and background, 

presence of noise, variation of vessel radius, brightness, 

curvature, and shape. In addition, manual methods are slow 

and subject to observer bias. For quantification of vascular 

changes several automatic methods have been proposed. Full 

width half-maximum (FWHM) or half-height at full-width 

(HHFW) was introduced by Brinchmann-Hansen, which 

measures the width of retinal vessels recorded using 

microdensitometric methods [4, 5]. Zhou et al. experimented 

with Gaussian fitting functions to estimate vessel width and 

they reported promising results using a Gaussian model [6]. 

Gregson et al. introduced an alternative approach, 

comprising of a rectangular profile of a fixed height that is 

fitted to the profile data [7]. Chapman et al. compared three 

methods of automated vascular measurements (Gaussian 

function, Sobel edge detection and SLRF) with manually 

recorded vessel diameters [8].  They reported that the 
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Gaussian function performed poorly in comparison with 

SLRF method. Marr and Hildreth in 1980 [9] have argued 

that the Gaussian is an optimal filter for edge detection 

because of its localization properties in both the spatial and 

the frequency domains. Since then, the Gaussian has been 

widely used in retinal image studies. Gang and his group 

evaluated the fitness of estimating vessel profiles with the 

Gaussian function and proposed an amplitude-modified 

second-order Gaussian filter for the detection and 

measurement of vessels [10]. Zhang and his group proposed 

a matched filter (MF) approach, namely the MF-FDOG 

(first-order derivative of Gaussian), to detect retinal blood 

vessels. This method was composed of a zero-mean 

Gaussian function, and its first-order [11]. Zhu [12] 

presented a method to detect vessels based on symmetry in 

the Fourier domain. They measured symmetry using the 

scale-invariant property and the phase congruency model. 

This method is effective in the presence of thin and thick 

vessels and invariant to brightness variations of the vessel. 

However, it is ineffective in the presence of a wide range of 

vessels, and requires optimal parameter values or a 

combination of predefined models.  

 
Figure 1. Retinal photograph. The white line on image shows the manually 
selected cut of a normal vessel near the macula. 

Figure 1 shows a fundus photograph of an eye with a typical 

selection of a normal vessel near the macula. Typical slice 

has been demonstrated in Figure 2 where    is the grey level 

intensity at the vessel relative to the average retinal 

background and    is the intensity of the light reflex. The 

width of the blood column,    and the width of the light 

streak,     are measured at the level of half minimum, 

(     ) and at half maximum (     ) intensities [13]. 
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Figure 2. A schematic pixel intensity of scan parameters in a densitometric 
profile across a retinal vessel [13].    is the width of the blood column. 

One of the difficulties in measuring the vessel diameter 
using edge detectors is that any linear filtering on a 
densitometric profile across a retinal vessel suppresses noise 
and also blurs the significant transitions. The amount of 
smoothing applied depends on the size or scale of the 
smoothing operator. Large scales extract coarse details with 
a large localization error. Besides, finding a single scale of 
smoothing which is optimal for all vessel diameters in a 
single retinal image is very difficult. In order to solve  this 
problem, Jeong and Kim [14] proposed a scheme which 
automatically determines the optimal scales for each pixel 
before detecting the final edge map by defining an energy 
function that quantitatively determines the usefulness of the 
possible edge map. However, this method showed a poor 
result for detecting straight lines in vertical or horizontal 
directions and very low speed performance. Deng and Cahill 
[15] use an adaptive Gaussian filtering for edge detection. In 
this method variance of the Gaussian filter adapts to the 
noise characteristics and the local variance of the image 
data. The disadvantage of this method is that it assumes the 
noise is Gaussian with known variance. In this research, we 
used a new method based on L1 regularization to find the 
optimum filter scales which trade-off the noise with the edge 
localization error (smoothing error) of the signal. The edge 
detections are based on phase congruency with the Gabor 
function [16-17]. We also change the weighting factor of the 
phase congruency algorithm to a fuzzy weighting to 
attenuate its response to noise in an area away from the 
region of interest. Our comparison of the new algorithm with 
the SLRF method shows an improvement in the standard 
deviation of measured vessel diameter. 

II. OUR APPROACH 

A. Edge extraction based on phase congruency 

Phase congruency is a multi-scale dimensionless quantity 

used to extract signal and image features that are invariant to 

change in brightness or contrast. Kovesi [16] defines phase 

congruency by the following equation: 
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where, ( )  denotes that the difference between the functions 

is not permitted to become negative,   is the one 

dimensional signal,   is the index of orientation,   ( ) is 

the weighting factor,   is a small value to avoid division by 

zero (for the result of this paper the value is 0.001),    is a 

threshold for estimating noise, ∑    ( )  is the sum of the 

wavelet response amplitudes in each orientation, and   ( ) 
is the local energy function. The frequency ranges (the 

wavelet scales) over which phase congruency is determined 

are selected by a regularization algorithm which will be 

explained in section C. We allowed seven wavelet scales 

(the selected scale and three scales larger and three scales 

smaller than the selected one) with a ratio of 1.2 between 

successive filters. If we let   
  and   

  denote the even and 

odd wavelets at scale  , ∑    
( ) the sum of the amplitudes 

of the frequency components is given by 
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 ( ) denotes the pixel intensity of densitometric profile 

across a retinal vessel (Figure 2). 

The local energy also is defined for a one dimensional 

profile as 
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In our study the orientation of the signal is defined by a line 
perpendicular to the selected vessel. This line is drawn 
manually and its alignment is updated to maximize 
orthogonality using the Matlab commands “getline”, and 
“improfile” that return pixel-value cross-sections along line 
segments. Figure 3 illustrates the result of a typical one 
dimensional signal after applying an even filter, an odd 
filter, and our fuzzy weighted phase congruency.  

 
Figure 3. Comparison of algorithms applied to typical retinal vessel profile 
(top). The second graph is the output of the even filter, the third one is the 

output of odd filter and the fourth one is our phase congruency result. 

B. Weighting 

A difficulty with phase congruency is its response to noise 

[16]. In Equation (1) the effect of noise is bounded by 

subtraction of a threshold from the local energy. However, 

the pixel intensity inside the densitometric profile as shown 

in Figure 3 is not as sharp as the step profiles. For solving 
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this problem we use a weighting factor which combining the 

weighting by frequency spread [16] and two sigmoid curve 

membership functions (Figure 4). For every selected vessel 

we used the frequency spread weighting function. For pixel 

intensities less than the average the coefficients were 

multiplied by the descending sigmoid membership function 

and for larger than average, they were multiplied by the 

ascending sigmoid curve. The typical graph of phase 

congruency coefficients when weighted by these fuzzy rules 

is demonstrated in figure 3. 

 

 
Figure 4. Sigmoid membership functions used to weight the phase 

congruency coefficients. The average pixel intensity in this graph is 117. 

C. L1 trend estimating 

In noise filtering, the variance of the observed signal (vessel 

densitometric profile) is related to original signal with the 

following relation: 

  
 ( )    

 ( )    
 ( ) (4) 

where   is the observed signal,   is the original signal and   

is the noise. In order to adapt the variance of filter scale 

( ) to the local variance of signal, a possible solution is to 

use the local variance of the original signal denoted as   
 , 

which also needs to be estimated or assumed. In this paper 

we propose a regularization algorithm [18- 20] to determine 

the optimum filter scale. This method is based on an 

optimization problem with two competing objectives. We 

can choose the trend estimate   as the minimize of the 

objective function 
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where ‖ ‖  ∑ |  |  denotes the L1 norm of the vector  , 

‖ ‖  (∑   
 

 )    is the Euclidean or L2 norm,   is the 

second-order difference matrix,    is the Gaussian filter 

with scale of   which convolve with the observed signal, 

and     is the regularization parameter used to control the 

trade-off between smoothness of trend and the size of 

residual (      ). The L1 trend filtering method 

produces trend estimates that are piecewise linear, and 

therefore is well suited to analyzing time series with an 

underlying piecewise linear trend. Figure 5 demonstrates L1 

trend estimation of a typical densitometric profile across a 

retinal vessel by regularization parameter        and   
 . The value of   is related to the result of estimated trend. 

As   decreases to zero the level of smoothing is zero and the 

estimated trend becomes smoother by increasing  .   

 
                                                     Pixel number  

Figure 5. The red graph shows a typical noisy densitometric profile and the 

blue graph is the L1 trend estimation with        and      . 

 

Figure 6 shows the typical changes of mean square error 

related to the smoothing level of selected vessel profile by 

increasing filter scale.  As the filter scale   increases, the 

fitting error which related to smoothness level of the filtered 

signal decreases. 

 
Figure 6. Estimated error curve with the L1 trend algorithm for different 

filter scales. 

III. METHODS 

Twenty color fundus retinal images were obtained from 

normal and healthy people in the study from the Save Sight 

Institute (Sydney Eye Hospital Campus, University of 

Sydney). The images were captured by TOPCON (TRC-

50IX) and the digitized image dimensions were      
     pixels (the width of each pixel is      ). From this 

database    vessels were selected randomly. The line 

normal to each vessel was selected manually. The median 

diameter in ten parallel cross sections of the selected slice 

was measured with one pixel spacing between each cross 

section.  Ten times up-sampling and interpolation of the 

profile was performed to include changes smaller than a 

fraction of a pixel [21]. The vessel diameter calculated with 

two automatic methods: 1) the proposed algorithm and 2) the 

conventional SLRF. These were compared to manual 

calculation of HHFW. The mean difference in the diameter 

calculated by the automatic methods and the manual 

calculation of HHFW were evaluated with     limits of 

agreement (    ) and shown graphically as Bland-

Altman plots [22]. 
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IV. STATISTICAL ANALYSIS 

Figure 7 and 8 demonstrated Bland-Altman plots for the 

SLRF and proposed algorithm. The mean differences (95% 

limits of agreement) between the diameters measured 

manually and SLRF was 2.81 pixels and for the proposed 

method was 0.77 pixels. The repeatability coefficients for 

each technique         (   standard deviation for median 

diameter determination for each method [8]) were 9.56 for 

SLRF and 4.22 for proposed method. 

 
Figure 7. Bland-Altman plots of difference between median manual and 

median SLRF diameter measurements. 

 
Figure 8. Bland-Altman plots of the difference between median manual and 

median proposed method of diameter measurements. 

V. CONCLUSION 

In this paper, we have described an effective approach for 

boundary detection of retinal vessel using cross-sectional 

profiles. The proposed algorithm uses auto scale Gabor 

filters to extract the edge information based on phase 

congruency.  Using one dimensional signal analysis on a 

selected orientation (normal to the vessels) increases the 

speed of calculation, as the computational burden is less than 

2D phase congruency which tries to find the maximum 

modulus of the transform as pixel features over several 

orientations. In our approach, we used retinal vessels from 

normal and healthy people. Hence we assume that the profile 

trend is piecewise linear and fit the optimum filter scale by 

adjusting the regularization parameter. The next step in our 

study will be evaluating the method on unhealthy patients as 

their vessels may have some vascular abnormalities such as 

exudation, or abnormal vessel walls that could impact on our 

piecewise linear estimation. Our method is effective for a 

wide range of vessels diameters and can be used to calibrate 

the retinal vascular changes in diabetic retinopathy, macular 

telangiectasia, and age-related macular degeneration. This 

method could be useful for retinal image sequences analysis 

[23] with little operator intervention. 
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