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Abstract— We present a regional propagation approach
based on retinal structure priors to localize the optic cup in 2D
fundus images, which is the primary image component clinically
used for identifying glaucoma. This method provides three
major contributions. First, it proposes processing of the fundus
images at the superpixel level, which leads to more descriptive
and effective features than those employed by pixel based
techniques, without additional computational cost. Second, the
proposed approach does not need manually labeled training
samples, but uses the structural priors on relative cup and
disc positions. Third, a refinement scheme that utilizes local
context information is adopted to further improve the accuracy.
Tested on the ORIGA-light clinical dataset, which comprises
of 325 images from a population-based study, the proposed
method achieves a 34.9% non-overlap ratio with manually-
labeled ground-truth and a 0.104 absolute cup-to-disc ratio
(CDR) error. This level of accuracy is much higher than the
state-of-the-art pixel based techniques, with a comparable or
even less computational cost.

I. INTRODUCTION

Glaucoma affects about 60 million people [1] and is
responsible for approximately 5.2 million cases of blindness
(15% of world total) [2]. It is the second leading cause of
blindness (behind cataracts), with a mean prevalence of 2.4%
for all age groups and 4.7% for ages 75 years and above [3].
Glaucoma unfortunately cannot be cured because the damage
to the optic nerve cannot be reversed. Thus it is critical
to detect this degeneration of the optic nerve as early as
possible in order to stall its progression and and prevent the
deterioration of vision [4]; however, more than 90% of the
afflicted were unaware of their optical neurodegeneration [5],
[6]. To facilitate widespread testing, much recent work has
focused on computer-assisted glaucoma diagnosis techniques
based on inexpensive and widely used digital color fundus
images.

Among the structural image cues studied for glaucoma
diagnosis, those based on the optic disc and cup are of
particular importance. The optic disc is located where the
ganglion nerve fibers congregate at the retina. The depression
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inside the optic disc where the fibers leave the retina via
the optic nerve head (ONH) is known as the optic cup.
The boundaries of the cup and disc structures need to be
identified as it facilitates evaluation of glaucoma cues such as
cup and disc asymmetry and large cup-to-disc ratio (CDR),
defined as the ratio of the vertical cup diameter to the vertical
disc diameter [7]. Typically, the CDR value is determined
from a manually outlined optic disc and cup. But since
manual annotation is labor intensive, researchers have sought
automatic methods for disc and cup segmentation.

In previous work, researchers have mainly focused on
automated segmentation of the optic disc [8], using vari-
ous techniques such as intensity gradient analysis, Hough
transforms, template matching, pixel feature classification,
vessel geometry analysis, deformable models and level sets
[9][10]. In this paper, we address the challenging problem of
cup detection [8][11][12], using a large clinical dataset called
ORIGA-light [13] in which the ground-truth optic discs and
cups are assessed and annotated by a team of expert graders.

Previous cup segmentation algorithms are based on classi-
fying pixels as part of the cup or rim (the disc area outside the
cup) [8][12]. Unlike these methods, our approach identifies
a cup via visual similarity-based label propagation at a local
region scale (i.e., superpixels), taking advantage of prior
information on retinal structure to infer confident cup/rim
labels of partial superpixels directly from the test image,
without the need of a pre-learned classifier and training
samples. Furthermore, the local context is utilized to refine
the cup/rim labels for each superpixel.

This optic cup localization approach achieves significant
improvement on cup localization accuracy, with a com-
parable or even less computational cost comparing with
the current state-of-the-art optic cup segmentation methods.
This work indicates much promise for developing practical
automated/assisted glaucoma diagnosis systems with low-
cost and widespread digital fundus cameras.

II. REGIONAL PROPAGATION BASED CUP LOCALIZATION

In this work, we localize the optic cup in a given disc
image which may be obtained using segmentation methods
such as [9]. As illustrated in Fig. 1, our method segments
the input disc image into local regions (i.e., superpixels),
removes superpixels that corresponds to blood vessels, labels
superpixels as the cup or rim based on structure priors,
propagate the labels to remaining superpixels, refines the
superpixel labels, and then determines a cup location by
ellipse fitting.

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

1430978-1-4577-1787-1/12/$26.00 ©2012 IEEE



Input: A Test Disc Image

Label Initialization & 

Feature Extraction

Superpixel 

Segmentation

Output: A Cup Region

Blood Vessel 

Extraction/Removal

Retinal 

Structure 

Priors
Label Propagation

Ellipse Fitting

Label Refinement

Fig. 1. Flowchart of the proposed cup localization approach using regional
propagation based on retinal structure priors.
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Fig. 2. Illustration of a fundus disc image segmented into 512 superpixels.
Left: outline of rim and cup in the original disc image. Right: segmentation
into superpixels.

A. Superpixel segmentation

The first step of the proposed approach is to divide the disc
into local regions. Unlike dividing an image into a grid of
regular patches, we instead segment the disc into superpixels
based on the following considerations. First, superpixels are
becoming increasingly popular in computer vision applica-
tions because of improved performance over pixel based
methods. Second, superpixels have the important property
of preserving local boundaries, as exemplified by the typical
segmentation result shown in Fig. 2. Third, this segmentation
can be processed rapidly. In this work, we utilize the state-of-
the-art SLIC (Simple Linear Iterative Clustering) algorithm
[14] to segment the fundus disc image into compact and
nearly uniform superpixels. It takes only 21ms for a GPU
implementation or 354ms for a CPU implementation on a
640× 480 image [15].

Fig. 3. Blood vessel extraction and removal. Left: blood vessel mask.
Right: superpixels on blood vessels (marked with green dots) or out of disc
(with blue dots).

B. Blood vessel removal

Since blood vessels appear approximately the same in
both the rim and cup regions, many algorithms have been
proposed for blood vessel extraction in retina images to
avoid their effects on rim/cup labeling accuracy. In our case,
extraction results need not be very precise, since images are
processed at the level of superpixels. So we use the bottom-
hat filtering algorithm [16], which trades off some precision
for speed, to rapidly generate a rough blood vessel mask,
and then identify superpixels that overlap the mask by at
least 75% (Fig. 3). These superpixels, as well as those that
lie outside the disc, are eliminated from further processing.

C. Feature representation for superpixels

The main step of the proposed approach is the superpixel
label propagation. To assess the visual similarities among
superpixels, we have to extract certain visual features from
each superpixel. Various features have been used for model-
ing superpixels, including shape, location, texture, color, and
thumbnail appearance [17].

In our application, only location and color information are
relevant for cup/rim classification. For the i-th superpixel, we
extract a feature vector fi that consists of position informa-
tion (denoted by (xi, yi, di) as shown in Fig. 2), mean RGB
colors (ri, gi, bi) and a 256-bin histogram (hri , h

g
i , h

b
i ) for

each color channel. To avoid magnitude differences among
the features, they are each normalized to the range of [0, 1],
with L1-normalization of each histogram.

It is worth mentioning that no additional processing is
needed to reduce the influence of illumination change among
the images, since no learning process is involved in the
proposed approach.

D. Superpixel label initialization and propagation

To label each superpixel as the cup or rim without learning
procedure, we first initialize the labels of some superpixels
by capitalizing on prior knowledge of retinal structure, and
then propagate the labels to the remaining superpixels based
on visual similarity.

For superpixel label initialization, as illustrated in the disc
images of Fig. 2, a superpixel is essentially certain to lie in
the rim region if it is very close to the disc outer boundary.
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On the other hand, we can be assured that a superpixel
exists within the cup region if it is very close to the disc
center. Based on discussions with the expert graders, we
have conservatively modeled this structural prior such that
superpixels within 1/5 of the disc radius from the disc center
(green area in Fig. 2) are considered to be definitely in the
cup, while superpixels beyond 9/10 of the disc radius from
the center (blue area) are definitely in the rim region.

With these labeled superpixels, the remaining superpixels
are labeled by similarity based propagation. For the i-th
superpixel which is unlabeled, its label li is defined as

li =
1

N

N∑
j=1

si,j −
1

M

M∑
k=1

si,k, (1)

where si,j denotes the similarity between i-th superpixel and
the j-th superpixel labeled as cup (+1), similarly, si,k denotes
the similarity between i-th superpixel and the k-th superpixel
labeled as rim (-1), and the similarity function is defined as

si,j = e
−

(fi−fi,j)
2

2σ2
f , (2)

in which σf controls the sensitivity to feature noise.
This technique not only avoids classifier training with

manually labeled training samples, but also avoids any ad hoc
image manipulations to conform the test data to the training
data (e.g. illumination normalization), since the labeled and
unlabeled superpixels are from within the test image.

E. Superpixel label refinement
To reduce superpixel labeling errors, we employ a refine-

ment scheme that accounts for local context, i.e., superpixel
labels are filtered with respect to feature similarity among
superpixels within a certain range (i.e., the propagation range
Rp, e.g., 1/10 of the disc radius). This yields the final label
l′ of a superpixel

l′i = li +
1

N

N∑
t=1

li,t · si,t, ∀ Dis(i, t) ≤ Rp, (3)

where li,t denotes the label of the t-th neighbor of the i-th
superpixel, si,t defined in Eq. (2) and Dis(i, t) denotes the
similarity and distance between the i-th superpixel and its
t-th neighbor. In our experiments, Dis(i, t) is defined as the
Euclidean distance

Dis(i, t) =
√
(xi − xt)2 + (yi − yt)2. (4)

After obtaining the final labels of all superpixels, the
minimum ellipse that encompasses all the superpixels with
positive labels is computed to produce the detection re-
sult, represented by ellipse center/elongation parameters
(û, v̂, α̂, β̂).

III. EXPERIMENTS

In this section, we describe the evaluation criteria, then
evaluate our regional propagation based cup localization
approach through an experimental comparison to state-of-
the-art pixel based segmentation methods [9][12], using the
ORIGA-light dataset comprised of 325 images. We also
report how the algorithm parameters affect performance.

TABLE I
PERFORMANCE COMPARISON OF OUR METHOD AND PIXEL BASED

SEGMENTATION METHODS

Method m1 m2 δ
regional propagation 0.349 0.336 0.104

Level-set [9] 0.495 0.847 0.162
Level-set+Hist-analysis [12] 0.476 0.702 0.140

Relative error reduction to [9] 29.5% 60.3% 35.8%
Relative error reduction to [12] 26.7% 52.1% 25.7%

A. Cup localization evaluation criteria

Three evaluation criteria are commonly used for cup
localization/segmentation, namely non-overlap ratio (m1),
relative absolute area difference (m2) [18] and absolute cup-
to-disc ratio (CDR) error (δ), defined as:

m1 =1− area(Edt

⋂
Egt)

area(Edt

⋃
Egt)

,

m2 =
|area(Edt)− area(Egt)|

area(Egt)
,

δ =
|Ddt −Dgt|

DD

(5)

where Edt denotes a detected cup region, Egt denotes the
ground-truth ellipse, Ddt is the vertical diameter of the
detected cup, Dgt is the vertical diameter of the ground-
truth cup, DD is the vertical diameter of optic disc which
is normalized to 2, thus 0 < Ddt, Dgt ≤ 2.

In fact, m1 is most related to cup localization accuracy
and δ is most related to glaucoma diagnosis; thus these two
criteria are relatively more important.

B. Comparison to pixel based segmentation methods [9][12]

We compared our regional propagation based approach to
state-of-the-art pixel based segmentation methods. One of
the few methods for both cup and disc segmentation is the
level-set method of [9] (referred to as Level-set), which first
identifies the pixels that belong to the cup region, then uses
a convex hull method to generate an ellipse. In [12] (referred
to as Level-set+Hist-analysis), histogram based analysis of
the color pixel intensity together with multiple method fusion
are also employed to further improve cup detection accuracy.

Table I compares our method to these two level-set ap-
proaches. Compared with the more advanced approach [12],
our method is shown to significantly improve cup localization
accuracy in terms of m1, m2 and CDR error (δ), which
are reduced by 26.7%, 52.1% and 25.7%, respectively. The
results indicate the advantage of superpixel based features
over pixel based methods, as also observed in previous work
[14].

C. Influence of parameter settings on accuracy and speed

We examined the performance and stability of the pro-
posed regional propagation based method with different
parameter settings. For this approach, the number of super-
pixels (SP ) is a key parameter that affects performance in
terms of both accuracy and speed, and the propagation range
(Rp) may also affect the performance. As shown in Fig. 4
and Table II, one can make the following observations:
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Fig. 4. Cup localization errors with different parameters.

TABLE II
PERFORMANCE COMPARISON OF OUR METHOD WITH

DIFFERENT PARAMETERS

Parameters Evaluation criteria
SP Rp m1 m2 δ
128 0.1 0.377 0.327 0.105
128 0.2 0.388 0.378 0.110
256 0.1 0.349 0.336 0.104
256 0.2 0.352 0.311 0.106
512 0.1 0.356 0.339 0.105
512 0.2 0.363 0.309 0.105
1024 0.1 0.358 0.339 0.107
1024 0.2 0.371 0.316 0.108
2048 0.1 0.352 0.346 0.107
2048 0.2 0.368 0.320 0.107

• The errors become almost stable when SP ≥ 256, with
the lowest errors at SP = 256, in terms of m1 and δ.

• When superpixels are too large (i.e., smaller SP ), the
resulting under-segmentation can lead to ambiguously-
labeled boundary superpixels that require further seg-
mentation. When superpixels are too small (i.e., larger
SP ), the resulting features computed from the over-
segmented regions may become somewhat less distinc-
tive, making it more difficult to infer the correct labels.

• In terms of m1 and δ, little change in accuracy was
found when Rp varies from 0.1 to 0.2; however, the
errors become larger when Rp is set much larger (e.g.,
0.5). This can be expected, as long range context is less
applicable for a superpixel and may introduce error.

Computation speed was also evaluated, using a four-core
3.4GHz PC with 12GB RAM. The overall processing time
increases almost linearly with the number of superpixels
(SP ), since the most time consuming part is feature ex-
traction for each superpixel. For 128, 256, 512, 1024 and
2048 superpixels, the computation takes 1.0, 1.7, 3.2, 6.5
and 20.2 seconds per image, respectively. When SP ≤ 256,
the speed is comparable to or even faster than that of pixel
based segmentation [12], which costs about 1.5 seconds per
image; however, our method is much more accurate.

IV. CONCLUSION

For cup localization and CDR assessment in glaucoma
diagnosis, we proposed a regional propagation approach

based on retinal structure priors. Tested on a large clinical
dataset with three evaluation criteria, it achieves a 34.9%
non-overlap ratio (m1) with manually-labeled ground-truth,
a 33.6% relative absolute area difference (m2) and a 0.104
absolute CDR error (δ), deducting the errors significantly
comparing with pixel based segmentation methods. In future
work, we plan to elevate the accuracy by introducing other
features and learning methods.
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