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Abstract— This paper presents preliminary work toward
localizing on a surface which undergoes periodic deformation,
as an aspect of research on HeartLander, a miniature epicardial
crawling robot. Using only position measurements from the
robot, the aim of this work is to use the nonuniform movements
of the heart as features to aid in localization. Using a particle
filter, with motion and observation models which accurately
model the robotic system, registration and localization param-
eters can be quickly and accurately identified. The presented
framework is demonstrated in simulation on dynamic 2-D
models which approximate the deformation of the surface of
the heart.

I. INTRODUCTION

The continued rise in the appeal of minimally invasive
cardiac therapies stems largely from the reduction in patient
morbidity. Standard cardiac surgeries require invasive ster-
notomies or thoracotomies and result in longer patient stays
and increased risk of infections. While minimally invasive
methods provide many benefits to the patient, the instru-
ments and access points used pose significant technological
challenges [1]. Providing visual feedback to the clinician is
one of these challenges because the small port-like incisions
used do not permit line of sight to the operation field. This
challenge has previously been overcome by using real time
medical imaging such as fluoroscopy [2], magnetic resonance
imaging (MRI) [3], or ultrasound [4]. Another method,
image-guided surgery, is often used in robotic interventions
[5], [6].

In image-guided surgery, 3-dimensional maps of the oper-
ating field are constructed from pre-operative medical images
and provide a virtual view to the clinician. The surgical
device, which is often tracked using an electromagnetic
position sensor, is localized within the map and displayed
in the visualization. Registration between the map and the
operating site must also be found so that desired motion
in the map frame can be translated to motion in the real
world. This framework is closely tied to robotic interventions
because in order to plan and act intelligently, the robot must
possess a map of the environment and know where it is in
that environment.

Generally, the maps used in image guided surgery are
static. Although the heart undergoes periodic deformations of
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Fig. 1. The HeartLander robot.

up to 30 mm due to the heartbeat and respiration [7], treating
the heart as a dynamic body poses significant challenges
for systems which move freely in the cardiothoracic cavity
or inside the heart due to changing contact constraints. If,
however, a robot is constrained to the surface of the heart,
the dynamic nature of the heart may be used to improve
localization and registration.

HeartLander, shown in Fig. 1, is a miniature mobile robot
which adheres to and moves across the surface of the heart
to provide therapies in a minimally invasive manner. Access
to the heart is gained via a subxiphoid skin incision and an
incision in the pericardium. The robot adheres to the sur-
face using suction, and moves by alternately extending and
retracting drive wires, which controls the distance between
the body sections, and alternating suction. Previous work has
demonstrated the ability to access, locomote, and accurately
reach targets in live animal testing [8]; however, the current
methods used for localizing on the surface of the heart use
several approximations which limit accuracy.

The current system uses a static heart model gener-
ated from pre-operative CT images, and because of this,
position measurements, which come from a 6-degree-of-
freedom electromagnetic tracking sensor (microBIRD, As-
cension Technology) embedded in the front foot of the
robot, are filtered to remove the periodic motion due to the
physiological cycles. The filtered position measurement is
treated as the position of the robot on the surface of the static
heart model. The transformation between the map frame and
measurement frame is found using markers placed on the
chest wall which are identified in each frame.

This work uses simplified 2-dimensional maps as a proof
of concept for improving localization and registration ac-
curacy by treating periodic deformations as features which
yield information about the current robot position on the
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Fig. 2. Example 2D surface generation. (a) Four anchor points, shown in green, follow the randomly-generated periodic motion, shown in red. (b)
Visualizing the randomly-generated 2D surface in 3D where the vertical axis is phase. The 2D surface at each phase is the cross section of the 3D surface.

heart. The work presented uses a particle filter to estimate
localization and registration parameters, is demonstrated in
simulation on surfaces which approximate the surface of the
heart, and is the initial step towards developing the methods
for implementation on full 3-dimensional models.

II. METHODS

A. Surface Generation

The work presented relies on possessing complete maps
which describe the periodic motion of a surface. For our
purposes, a map of a surface takes the form:

M = [x(φ), y(φ), ~n(φ)], (1)

where φ ∈ (0, 2π] is the phase, x and y are Cartesian
coordinates in map frame, and ~n are the surface normals.

In order to develop and test the following methods used
for localizing on such surfaces, random 2D periodically
deforming surfaces were generated in the following manner.
The map of each surface is defined by a discrete number of
points whose base shape is a circle, with a radius defined as
rbase. The motion of the surface is set by randomly assigning
periodic motion to a specified number of equally spaced
anchor points. The motion of each of the anchor points is
defined in polar coordinate as:

ri(φ) = rbase +

Hr∑
n=1

Ain cos (nφ+ αin) (2)

θi(φ) = θbasei +

Hθ∑
n=1

Bin cos (nφ+ βin), (3)

where φ is the phase, θbasei are the anchor points base angular
position which are equally spaced over (0, 2π], Hr and Hθ

are the number of harmonics in each Fourier series, and
Ain , αin , Bin , and βin are randomly-generated Fourier series
parameters. With the motion of the anchor points defined, the
motion of all points in between the anchor points are then

linearly interpolated in polar coordinates from the adjacent
anchor points. The polar coordinates are transformed to
Cartesian coordinates and surface normal are calculated and
stored in the map.

An example of a randomly-generated 2D surface which
undergoes periodic deformation is shown in Fig. 2(a). This
map was generated using four anchor points, shown in green,
whose periodic motion is depicted as dashed red lines. The
same 2D surface is shown in 3D in Fig. 2(b). The vertical
axis in the 3D plot is phase, where the 2D surface at a
particular phase is then the cross section of the 3D surface.

B. Simulated System

The simulated system is represented by a given map, M ,
and the following state vector:

st =
[
xm ym φ ∆x ∆y ∆θ

]T
, (4)

where xm and ym are the location of the robot on the
surface in map coordinates, φ is the current phase, and ∆x,
∆y and ∆θ are registration parameters defining how the map
is translated and rotated in world coordinates. Using this
representation, the location of the robot in the world frame
is then:

[
xw
yw

]
=

[
cos ∆θ − sin ∆θ ∆x
sin ∆θ cos ∆θ ∆y

]xmym
1

 (5)

The phase of the system is advanced by:

φt = φt−1 + ωdt, (6)

where the velocity, ω, is assumed to be constant.
Control inputs to the robot, ut, move the robot along the

surface a distance |ut| counterclockwise for negative inputs,
and clockwise for positive inputs. Using this framework, we
wish to estimate the current state vector, st, using a particle
filter.
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C. Particle Filter

This section gives a description of the particle filter
algorithm implemented in this work. The particle filter is
a nonparametric Bayes filter which represents the posterior
distribution by a set of random samples, or particles, drawn
from the posterior. Each particle is a hypothesis of the the
true state of the system, where the likelihood for each state
hypothesis is proportional to its Bayes posterior, and the
set of particles represents the the distribution over possible
states. A more in-depth treatment of the algorithm and related
topics can be found in [9].

1) Particle Initialization: Initially it is assumed that the
only information available at initialization is a single mea-
surement of the pose of the robot in the world frame.
Although this measurement can not be leveraged to gain any
knowledge about where on the surface the robot currently is,
one can use this measurement to restrict the space of registra-
tion parameters. At initialization, a fixed number of particles,
N , is generated, randomly distributed over the surface and
phase space. Using the known location of the particles on
the map, the registration parameters are instantiated such that
each particle, when transformed to world coordinates, would
produce the initial measurement.

2) Motion Model: Incorporation of the control inputs
in the state transition distribution is achieved through use
of a robot motion model. As previously described, the
control input ut move the robot along the surface a distance
|ut| clockwise or counterclockwise depending on the sign
of ut. In order to return a sample from the distribution
p(st|ut, sit−1), noise is injected into the motion model. The
distance each particle moves on the surface is

uit = ut + δiu, (7)

where δiu is a random sample from N (0, σ2
u). Also, the same

method is used to advance the phase of each particle.

φit = φit−1 + (ω + δiω)dt, (8)

where δiω is a random sample from N (0, σ2
ω).

3) Measurement Model: The measurement assumed in
this work is the pose of the robot. In the case of a 2D map
this pose is x and y Cartesian position, and a surface normal
~n. The assumption is made that the angle measurement is
the surface normal of the surface at the real location of the
robot. The weight of each particle

wit = p(zt|sit) =

(
ηz exp

dz2

σ2
z

)(
ηθ exp

dθ2

σ2
θ

)
, (9)

where dz is the Cartesian distance between the current
measurement zt and the particles predicted measurement
ẑi, and dθ angular distance between the measured surface
normal and the particles predicted normal.

dz2 = (z − ẑi)T (z − ẑi) (10)

dθ = arccos (
∣∣~n · ~ni∣∣) (11)

4) Resampling: In order to decrease the risk of losing
particle diversity, resampling only occurs when the variance
of the particle weights is sufficiently large. Also, in order
to reduce the sampling error, low variance sampling is used
[9]. Instead of just drawing independent samples based on
each particle’s weight, this method ensures the survival of
any particle which has a weight a weight greater than 1

N ,
where N is the number of particles, is guaranteed to survive.

III. EXPERIMENTS

In order to demonstrate the previously described frame-
work, trials were run in the simulated system. The number of
particles in each trial was set to N=1000, and the motion and
observation models were as specified in section II-C. Motion
model parameters were set to: σu = 1mm, and σω = π

180
radians. Observation model parameters were set to ηz = 2,
and ηθ = 1. Each trial was run for 360 iterations, equal to
exactly one deformation period.

Fig. 3 illustrates the progression of the particle filter
through a typical trial. The ground truth location of the robot
is shown by the large green dot in each image. Fig. 3(a)
shows the initialization of the filter, and demonstrates the
randomized coverage of the state space. Fig 3(b) shows the
particle filter after 25 iterations, where the particles have
begun to form clusters around states with high likelihoods.
The reason a few separate clusters form is due to geometric
symmetries in the generated map, where different registration
and phase parameters produce similar world-frame motion.
Fig 3(c) shows the particle filter after 125 iterations, where
enough observations have been gathered to greatly reduce
the uncertainty, and only a single cluster remains.

To make a prediction for the map-frame location of the
ground truth using the particle filter at any time during
the trial, we take the 10 particles with the highest weights
and remove the outliers, then average their state estimates.
The reason we use an average of particles rather than
simply outputting the single highest-weighted particle is for
stability: as the weights on each particle is updated after
every observation, the highest-weighted particle is likely to
change often, and our localization output will be rather noisy.

State estimation errors made by the particle filter predic-
tion output were recorded, and averaged over 100 trials to
obtain a statistically significant result. Each of the 100 trials
are completely independent with a different generated map,
and separate initializations. The results are shown in Fig 4.
We observe that on average the particle filter has converged
by iteration 100, with almost all trials converging after 200
iterations. The average registration errors in position and
angle are reduced to simply discretization errors in the map
generation at 1.0mm and 0.02 rad, respectively. The map
frame errors are slightly higher, with the average position
error at 3mm and phase error at 0.05 rad.

IV. DISCUSSION

The presented work shows that estimation of registration
and localization parameters on a periodically deforming
surface is feasible, and that a well-tuned particle filter can
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(a) (b) (c)

Fig. 3. Representative results of localizing on map using a particle filter. The ground truth position of the robot is shown by the large green dot. Each
particle is represented by a small dot whose color denotes the particle weight. Low weights correspond to blue and high to red, with the color scale
spanning the weights of the current particles. Plots correspond to (a) Filter initialization with particles randomly distributed over the surface, (b) after 25
iterations, and (c) after 125 iterations.

(a) (b)

Fig. 4. (a) Map frame error and phase error and (b) registration error for 2D localization over 100 runs. Gray lines denote a single trial, while blue lines
denote the average over all trials. Errors for each run are calculated between the ground truth and the average state estimate of the 10 highest weighted
particles. Position errors are calculated using the euclidean distance, phase and angle errors are absolute differences.

quickly and accurately converge to give low-error results.
The estimation error decreases with higher-fidelity maps or
finer discretization, and the steady-state error is close to
the discretization error of the map itself. The maps used,
however, are likely higher-fidelity than those derived from
medical imaging technology, and future work will investigate
using lower resolution maps or simultaneous localization and
mapping. While this work was implemented in a simplified
2D example, the framework is extendable to 3D, and pro-
vides insight into the importance of shrinking the parameter
space through intelligent particle initialization. Work imple-
menting the presented framework on realistic 3D models of
the beating heart is ongoing, as is incorporating deformation
due to respiration. Future work is also planned to investigate
how heartbeat irregularities affect performance.
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