
  

 

Abstract— A large-scale computational model of the 

hippocampus should consider plasticity at different time scales 

in order to capture the non-stationary information processing 

behavior of the hippocampus more accurately.  This paper 

presents a computational model that describes hippocampal 

long-term potentiation/depression (LTP/LTD) and short-term 

plasticity implemented in the NEURON simulation 

environment.  The LTP/LTD component is based on spike-

timing-dependent plasticity (STDP).  The short-term plasticity 

component modifies a previously defined deterministic model 

at a population synapse level to a probabilistic model that can 

be implemented at a single synapse level.  The plasticity 

mechanisms are validated and incorporated into a large-scale 

model of the entorhinal cortex projection to the dentate gyrus.  

Computational expense of the added plasticity was also 

evaluated and shown to increase simulation time by less than a 

factor of two.  This model can be easily included in future 

large-scale hippocampal simulations to investigate the effects of 

LTP/LTD and short-term plasticity in conjunction with other 

biological considerations on system function. 

I. INTRODUCTION 

As computational capability increases over time, large-
scale models of neural systems can be made that incorporate 
increasing amounts of detail.  With careful incorporation of 
more details into simulations, simulated brain region activity 
can give approximations to the information processing 
properties in real brain regions in diseased and healthy states.  
The hippocampus represents an ideal candidate for large-
scale simulation because it has been so well studied and 
because of its importance in memory and high-level 
cognition. 

In order to represent the information processing behavior 
of the hippocampus in a large-scale simulation, 
considerations to accurately reflect cellular morphology, 
biophysics, connectivity, and non-stationary behavior must 
be made.  Refer to Hendrickson et al. in these proceedings 
[1] for a general framework of how all these factors will be 
initially addressed and Yu et al. in these proceedings [2] for 
an initial incorporation of realistic connectivity.  This paper 
will focus on the preliminary implementation of non-
stationary behavior in a hippocampal large-scale simulation 
with consideration of plasticity.  Plasticity does not represent 
the only non-stationarity in the hippocampus (other examples 
include disease or development related non-stationarities); 
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however, studying plasticity can provide insights into the 
activity-dependent information processing characteristics of 
the hippocampus.   The goal of this study is to produce a 
mechanism which describes long-term 
potentiation/depression (LTP/LTD)  and short-term plasticity  
that can be used in subsequent large-scale modeling studies.  
In order to produce such a model, appropriate rules for each 
type of plasticity are selected, proper functions of the rules 
are verified in simulations, and the computational expense is 
analyzed. 

Activity dependent changes in synaptic weight due to 
LTP/LTD are widely believed to be integral in learning and 
memory formation.  While the exact relationship between 
neural activity patterns and LTP/LTD is not completely 
understood, there is evidence that the relative timing of 
presynaptic and postsynaptic spiking influences potentiation 
and depression.  As defined by spike-timing-dependent 
plasticity (STDP), if a presynaptic spike precedes a 
postsynaptic spike, there is potentiation, while conversely, if 
a postsynaptic spike precedes a presynaptic spike, there is 
depression [3].  Furthermore, the magnitude of the 
potentiation/depression increases with a shorter time interval 
between the presynaptic and postsynaptic spikes.  STDP will 
be used as a first implementation of LTP/LTD. 

 Short-term plasticity describes how the vesicle release 
probability of a single synapse is increased or decreased due 
to presynaptic spiking temporal patterns on the time scale of 
tens of milliseconds to seconds [4].  Most current models of 
populations of neurons consider graded synaptic transmission 
with each presynaptic event.  It is believed, however, that for 
each individual cortical synapse, presynaptic signal 
transmission is binary, with either vesicles released or not 
according to a vesicle release probability. This probabilistic 
release could have a large impact on how signals are 
integrated and processed between neural populations.  In 
order to include short-term plasticity in a large-scale model 
that incorporates probabilistic release, current deterministic 
models of short-term plasticity can be modified.   

One important difference to note between LTP/LTD and 
short-term plasticity as considered in this paper is how they 
modulate synaptic transmission.  The mechanism for short-
term plasticity is presynaptic and affects the vesicle release 
probability, while LTP/LTD modulates the amplitude of the 
postsynaptic conductance spike triggered by each vesicle 
release (see diagram in Figure 1).  

II. METHODS 

All plasticity learning rules and large-scale simulations 
will be implemented in the NEURON simulation 
environment [5]. 

Implementation of Activity-Dependent Synaptic Plasticity Rules for 

a Large-Scale Biologically Realistic Model of the Hippocampus 

Brian S. Robinson, Student Member, IEEE, Gene J. Yu, Student Member, IEEE,  Phillip J. 

Hendrickson, Member, IEEE,  Dong Song, Member, IEEE, Theodore W. Berger, Fellow, IEEE 

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

1366978-1-4577-1787-1/12/$26.00 ©2012 IEEE



  

A. STDP Implementation 

The weight of each synapse, w, is defined by the peak 
increase in synaptic conductance after each vesicle release 
event.  In the STDP rule implemented [6], as defined in 
Equations (1), (2), and (3), w is bounded between wmin and 
wmax. 

w = wmin + A          (1) 

A is a variable that captures the fluctuation in synaptic 
weight caused by pre/postsynaptic spike pairings according 
to the following STDP learning rules:  

                                       if Δt=tpost – tpre ≥0 (2) 

              if Δt=tpost –tpre <0    (3) 

The parameters p and d can be tuned to values between 
zero and one in order to scale the magnitude of potentiation 
or depression for each pre/postsynaptic spike pairing. The 
interspike interval affects the potentiation and depression 
magnitude with the time constants of τp = 17ms and τd = 
34ms respectively.  

In this implementation of STDP, there is an immediate 
onset of change for each synaptic.  This enables the effects of 
the STDP learning rule to be analyzed for simulations of 
seconds of activity instead of simulations of minutes or 
hours. 

The validity of other STDP rules that calculate the 
postsynaptic spiking at the soma have been challenged 
because they do not account for the fact that LTP/LTD can be 
induced when there is only dendritic spiking and no somatic 
spiking [7].  The STDP rule presented here, however, 
measures the postsynaptic spiking in the dendrite where the 
synapse is located, and therefore can incorporate the effects 
of local dendritic spiking. 

The proper functioning of the STDP learning rule in the 
large-scale model was validated by running a simulation of a 
single dentate gyrus (DG) granule cell with a physiologically 

realistic dendritic morphology and 3000 individual synapses.  
Each synapse received an independent Poisson input train, 
and the weight fluctuations of a synapse were analyzed with 
respect to the presynaptic and postsynaptic spike pairings. 

B. Short-term Plasticity  Implementation 

The short-term plasticity rule proposed by Dittman et al. 
[8] was modified from a deterministic, synapse population 
level rule into a probabilistic, individual synapse rule.  In the 
deterministic model, the excitatory postsynaptic current 
(EPSC) is mediated by a facilitation variable, F, and a 
depression variable, D.  The magnitude of each EPSC is 
proportional to F times D.  In the deterministic model, F 
increases and D decreases with each presynaptic action 
potential. In an individual synapse, mechanisms for short-
term facilitation are activated with each presynaptic spike and 
rely on influx of presynaptic calcium.  Therefore, F should 
increase with each presynaptic event as in the deterministic 
model.  Factors for depression, however, such as vesicle 
depletion, are activated with each vesicle release, which 
means that for an individual synapse, D should only decrease 
when vesicles are released.  The deterministic model, 
therefore, needed to be modified so that the same population 
performance is achieved when D decreases only with each 
probabilistic release.  Equation (4) shows the dynamics of the 
D variable in the deterministic model [8]. 

(4) 

Equations (5), (6), and (7) show the changes made in order 
to implement and test synapse level, probabilistic release. 
Refer to table 1 for a summary of the different variables used. 
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Fig 1. Diagram of short-term plasticity and STDP implementation.  Short-term plasticity determines the vesicle release probability based on the presynaptic 

spike train timing.  For each presynaptic spike, vesicle release either occurs or not based on the vesicle release probability.  With each vesicle release, there 

is a momentary increase in synaptic conductance.  STDP determines the magnitude of the increase in synaptic conductance based on the relative timing of 

vesicle release and postsynaptic spiking.  
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TABLE I.  MODEL PARAMETERS 

   Facilitation variable; ratio of sites activated by a stimulus 

   Deterministic Depression variable; ratio of sites that are release ready 

       Probabilistic Depression variable 

   Probabilistic depression variable for each release site 

t0   Times of each presynaptic spike 

   Timing of vesicle release for each release site 

   Total number of release sites 

   Recovery rate of depression variable 

   Uniform random distribution sample 

 

For validation, the probabilistic and the deterministic 
model variable values were computed and compared for 
trains of consecutive presynaptic events at varying 
physiologically representative frequencies of 10-80Hz.  
Model parameters were chosen that correspond to 
hippocampal synapses [8].   

C. Large-Scale Plasticity Computational Expense 

The computational expense of incorporating plasticity 
into a large-scale model must be analyzed to ensure that it is 
not prohibitive on running simulations.  In order to do so, the 
run times of a large-scale model of the DG granule cell 
population receiving inputs from the entorhinal cortex (EC) 
will be modeled with and without plasticities.  The large-
scale model used will have one tenth of the total rat 
physiological neural population (11,000 EC cells and 
100,000 DG granule cells).   Each granule cell will also 
explicitly model a realistic dendritic morphology.  
Furthermore, approximations of realistic connectivity and 
topography of the cells will be implemented.  Refer to 
Hendrickson et al. [1] for additional details of the large-scale 
model.  Each simulation was run on 400 processors at a time. 

III. RESULTS 

A. Spike-timing-dependent Plasticity Validation 

A simulation was performed for a single granule cell with 
3000 explicitly modeled synapses.  Each synapse 
incorporated the short-term plasticity and STDP rules 
described in the previous section.  The inputs for each 
synapse were independent, random, Poisson trains with a 
frequency of 5 Hz.  The traces of synaptic conductance and 
postsynaptic membrane potential for a single synapse are 
shown in Figure 2.  The first presynaptic spike occurs after a 
postsynaptic spike which should cause the synaptic weight to 
decrease according to the STDP learning rule.  This decrease 
in synaptic weight is shown in the simulation when the peak 
magnitude of the next conductance spike is diminished.  
Conversely, the proper functioning of the potentiation 
component of the STDP rule can be seen when the second 
presynaptic spike occurs right before a postsynaptic spike and 
the subsequent weight is increased.   

B. Short-term Plasticity Validation 

Validation of the probabilistic short-term plasticity 
equations were performed by simulating a population of 5000 
individual synapses and comparing their average output to 

the output of the deterministic model for input spike trains of 
different frequencies. A visualization of the difference in 
dynamics caused by using the probabilistic versus the 
deterministic rule can be seen by comparing their respective 
D traces during a simulation.  An individual probabilistic DPi 
trace varies significantly from the deterministic model D 
trace; however, the average of the probabilistic DPi traces did 
produce a qualitatively similar signal to the deterministic D 
trace at tested presynaptic input frequencies of 10-80Hz.  See 
Figure 3 for an example of D traces with a 20Hz stimulus 
train. 

Another comparison made for validation purposes is 
between the normalized EPSC amplitude in calculations with 
the deterministic and probabilistic models.  Deterministic and 
probabilistic normalized EPSC values, EPSCD and EPSCP 
respectively, are calculated as in equations (8) and (9), where 
F1 is the initial release probability. 

 (8) 

 

 

 (9) 

 

The similarity in EPSC amplitude at frequencies of 10-80Hz 
is shown in Figure 4. 

C. Computational Penalty of Plasticity in Large-Scale 

Implementation 

The computation time was compared for large-scale 
simulations with and without synaptic plasticity.  A sample 
output of a large-scale simulation is shown in Figure 5.  
Figure 6 shows the different run times between two 
simulations with and without plasticity. The computational 
time increase due to the plasticity rules is 64%. 
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Fig. 2 STDP function in a single synapse during a simulation. The vertical 

dotted line in the bottom plot indicates the timing of presynaptic events. 
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IV. DISCUSSION 

The simulations presented indicate the suitability of 
using the described plasticity rules for large-scale model 
implementation.  For the STDP model, change of weights 
in the simulation represented weight changes that would be 
expected with a STDP rule.  For short-term plasticity, the 
similarities in performance between the aggregate of 
probabilistic single synapses and the deterministic model 
indicate that the proposed model can be implemented at the 
single synapse. Furthermore, the inclusion of synaptic 
plasticity increased simulation computational time by a 
factor of less than two, which will allow plasticity to be 
included in any future large-scale simulations without 
changing the order of magnitude of simulation time.  
Because the plasticity models were implemented in the 
NEURON simulation environment, they can easily be 
incorporated into future large-scale models of the 
hippocampus. 

Future work includes adding other forms of plasticity, 
such as augmentation and homeostasis into one NEURON 
mechanism. With such a model, investigations can be 
made into how information processing in the hippocampus 
is affected by all different types of plasticity.   
Furthermore, the affects of plasticity can be studied in 
conjunction with other biological mechanisms and 
processes.  
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Fig. 3 Traces of D variable with 20 Hz stimulus for 10 consecutive 
presynaptic events. 

 

 

 
Fig. 4 Normalized EPSC amplitude comparison between deterministic 
model (dashed line) and probabilistic model (solid line). 

 

 
Fig. 5 Example raster plot of spiking activity of large-scale simulation. 

Granule cell position refers to position along septotemporal axis of the 
DG. 

 

 

 

 
 

 
Fig. 6 Simulation time with 100,000 DG granule cells, 11,000 EC cells, 

~3000 synapses per granule cell, 200ms simulated biological time.  
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