
  

 

Abstract— Linear model for synapse temporal dynamics and 

learning algorithm for synaptic adaptation in spiking neural 

networks are presented. The proposed linear model 

substantially simplifies analysis and training of spiking neural 

networks, meanwhile accurately models facilitation and 

depression dynamics in synapse. The learning rule is 

biologically plausible and is capable of simultaneously 

adjusting both of LTP and STP parameters of individual 

synapses in a network. To prove efficiency of the system, a 

small size spiking neural network is trained for generating 

different spike and bursting patterns of cortical neurons. The 

simulation results revealed that the linear model of synaptic 

dynamics along with the proposed STDP based learning 

algorithm can provide a practical tool for simulating and 

training very large scale spiking neural circuitry comprising of 

significant number of synapses and neurons. 

I. INTRODUCTION 

Synaptic dynamics is the computational engine for 

processing natural time-varying stimuli in brain [1, 2]. 

Processing of the time-varying stimuli is a difficult problem, 

and it is yet an unsolved problem for artificial models of 

brain function. Synaptic efficacy changes on a short time 

scale by several hundred percent in dependence of the past 

pre-synaptic activity, and it is the balance of facilitation and 

depression that determines the synaptic temporal dynamics 

and thereby forming the basis of neural computation [3]. 

Mathematical models of synaptic dynamics formulate 

facilitation and depression mechanism of neurotransmitter 

release replicating synapse temporal dynamics [3, 4, 5, 6, 7]. 

Facilitation-depression models (FD) represent long term 

plasticity (LTP) and short term plasticity (STP) of a synapse 

in a unified model; in which the LTP and STP are mutually 

dependent characteristics of synapse regulating its efficacy 

and temporal dynamics. Despite of biological plausibility of 

FD models, non-linearity and stochasticity of the proposed 

models make systematic analysis of synapse temporal 

dynamics cumbersome.  

Learning process infers the proper balance of facilitation, 

depression and neurotransmitter quanta in each synapse of 

an artificial neural network to achieve a desired spatio-

temporal computation  [3, 8]. Learning in dynamic synapses 

neural network (DSNN) challenges different difficulties. 

Spike generation is not a differentiable function of the 

neuron membrane activity restricting gradient descent 

approaches in synaptic adjustment. Also, defining an 
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objective function to characterize similarity between spike 

trains is not straightforward [9], and different similarity 

measures change learning process drastically. Nonlinearity 

and time-variant of spiking neural network is the other 

obstacle of the learning process. In fact, there is a lack of 

well-established learning algorithms for DSNN, meanwhile 

none of the proposed learning algorithms addresses STP 

adaptation. Tempetron [10] and ReSuMe [11] learning 

process only handle LTP adaptation in single layer of 

spiking neuron. SpikeProp [12] and Adeli et al. [13] are 

applicable to spiking neural network where there is only one 

spike per neuron per processing period. In fact, these 

learning algorithms - and their counterparts- are unable to 

exploit fine spatio-temporal computation of DSNN.  

Through this paper, two breakthrough steps in building an 

artificial neural model capable to solve the problem of 

processing time-varying stimuli are introduced; 1) a linear 

synapse model and 2) a biologically plausible synaptic 

adaptation algorithm. The novel model presents a balance of 

computational simplicity and biological plausibility, and it is 

applicable in DSNN with different time scales. The network 

provides a spatio-temporal computation unit suitable for 

neural simulation and pattern recognition tasks.  

In the first section of the paper, it is shown that the FD 

model- proposed by Markram et al.[5]- can be linearized, 

and yet presents an accurate model of the synapse dynamics. 

Also, a systematic sensitivity analysis for synapse temporal 

dynamics in response to change in the synapse internal 

parameters and impinging spike pattern is developed. The 

linear model plus sensitivity analysis is the substantial tool 

for analysis and learning of DSNN. 

In the second section of the paper, a biological plausible 

learning algorithm is defined [14]. The learning algorithm is 

motivated by a supervised learning in which synaptic 

parameters are adjusted to increase similarity between the 

network output and a desired spike train. The learning 

algorithm is a reward-based STDP learning rule [2] and is 

applicable for single layer recurrent DSNN.  

Through the third section of the paper, a specific application 

of the model in neural modeling is addressed. It is shown 

that synaptic parameters of a network consisting only two 

synaptic connections can be adjusted to reproduce different 

spiking and bursting patterns of the rat cortical neurons 

reported by Izhikevich [15].The novel neural model can be 

applied for a larger number of synaptic connections 

providing a computation tools for spatio-temporal 

processing tasks. 

II. LINEAR MODEL OF SYNAPSE DYNAMICS 

FD models for synapse dynamics [5, 6, 7] have the 

following general structure: 

Synaptic Dynamics: Linear Model and Adaptation Algorithm 
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                               (1.b) 

                                   (1.c) 

                                   (1.d) 

         (1.e) 

Variable    determines the facilitation process at time index 

  and    represents release ready vesicle quanta. Variable 

   denotes post synaptic membrane potential (PSP) and is 

determined by two auxiliary variables    and   .      and 

     coefficients are function of synapse internal parameters 

plus time of impinging action potentials (APs). Appendix A 

represents a detailed definition for each of      and      

coefficients. In synapse model, both    and    are 

normalized values ranging from zero to one; and their values 

are controlled by synapse parameters and history of APs. 

Synapse dynamics is AP-driven process. In response to a 

AP, facilitation factor increases rapidly and decays with a 

time constant about 100 milliseconds. Instantaneously, the 

increased facilitation determines quanta of vesicle release, 

which is defined by        . Release ready vesicles in 

synaptic cleft are depleted by         and recovered by a 

time constant of around 200 milliseconds. The PSP- either 

excitatory or inhibitory - amplitude is proportionate to 

released vesicle per AP and is modeled with an α-function 

[16]. Temporal dynamics of synapse is emerged by interplay 

of facilitation increase plus facilitation and vesicle recovery 

time constants. 

Synpase model written in equation (1) is a non-linear time-

variant system. Synapse dynamics between spike time 

intervals is a linear time-invariant system, and it is AP 

occurrence injects non-linearity and time-variant to synapse 

model [2, 14]. Non-linearity in synapse model appears in 

      term; and it becomes linear if       is replaced by 

a slack variable. The slack variable          is defined, 

which denotes minimum vesicle release for possible AP at 

time    . To build the synapse linear state space model, 

     needs to be defined by a linear combination of   ,    

and   . Variable                can be rewritten as 

linear function of   ,   ,    plus a new non-linear term - 

  
    . In the approximate linear model, the   

     term 

is dropped. This is a practical approximate as the   
     is 

smaller than   - because     - and has less contribution 

than other synapse variables in building     . Appendix A 

represents the state matrix and input vector for the linearized 

synapse model. It is possible to derive more accurate linear 

state space model by changing   
     to another slack 

variable and dropping higher order terms. Equation (2) 

represents synapse linear state space model: 

                                      (2.a) 

                    (2.b) 

               
  is the model state vector and    

corresponds to post synaptic membrane potential. Elements 

of   ,   ,    and    are constant function of synapse internal 

parameters, and        is one at AP time. The linear model 

provides a compact tool for temporal and steady state 

analysis of the synapse. Two following subsections analyze 

synapse temporal dynamics as a function of synapse internal  

 

 

 

 

Figure 1 Synapse Temporal Dynamics a) Impinging AP. Processing period 

is 500 milliseconds, and ISI of the AP is 50 milliseconds. b) Synaptic PSP 

for       ,     and    . Smaller    leads to potentiating synaptic 

efficacy, meanwhile higher values of    truns to depressing synapse c) 

Synaptic sensitivity in response to    changes . The synapse sensitivity is a 

non-linear function of    and AP pattern. For smaller   , the synaptic 
efficacy represents positive change in response to occurring APs, while for 

higher    the sensitivity flips through time. d) Synaptic efficacy in 

response to ISI variation for different   . Smaller    has higher sensitivity 

in lower ISI, and the peak of synaptic efficacy move to lower     for higher 

values of   . 

parameters and AP variability. Figure (1.b) shows PSP for 

different facilitation factors in response to a periodic APs.   

A. Parameter Sensitivity Analysis 

Each element of the state matrix -  ,   - and input vector -
  ,   - is a continuous function of the synapse internal 
parameters. Equation (3) denotes derivative of state vector 
relative to any of synapse parameters: 

     

  
  

   

  
        

   

  
      

                 
   

  
  

   

  
        

   

  
  (3.a) 
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Variable   can be any synapse parameters. Figure (1.b) 

shows 
   

   
 for three different value of facilitation factors. 

Equation (3) is the key component of the learning, which 
defines a recursive function for calculating derivative of PSP 
membrane relative to synapse parameters. Figure (1.c) shows 
the PSP derivative for different facilitation factors. 

B. AP Pattern Sensitivity Analysis 

Synaptic efficacy can be quantified by the ratio of vesicle 
release in the m

th
 and first impinging AP. The ratio for 

different inter-spike interval (ISI) represents a quantitative 
measure for synaptic sensitivity to variation in AP pattern. 
Equation (4) denotes the efficacy ratio for ISI of  k-
milliseconds, and figure (1.d) shows the ratio for different ISI 
with different facilitation factors. 
                     (4) 

Similarly, temporal dynamics can be analyzed in response to 

mean-firing rate. For homogenous firing rate, the synapse 
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model turns to a linear time-invariant model. Equation (5) 

represents synapse temporal dynamics and the sensitivity 

analysis for mean firing of  . 

                              (5.a) 
      

  
           

    

  
        (5.b) 

                    
             (5.c) 

The next section will discuss about learning algorithm in 

DSNN. 

III. SYNAPTIC ADAPTATION ALGORITHM 

A biological plausible learning rule capable of 
simultaneously adjusting LTP and STP synaptic parameters 
is introduced. The learning rule is a supervised learning rule 
in which the similarity between the network output spike 
train and a desired spike train is increased. It is shown that 
the link between the learning mathematics and biological 
counterpart leads to a reward-based STDP learning rule 
applicable of training a DSNN independent of its topology 
and size. In the following sections, similarity measure 
between spike trains and then supervised learning rule are 
introduced. The reward-based STDP and its formulation will 
be described too. 

A.  Spike Train Similarity Measure 

Train similarity measure evaluates the coincidence between 

APs in the test and desired spike trains [9, 14]. The measure 

quantifies the similarity between the test and desired spike 

trains in two different time scales. The fine temporal scale 

identifies each AP of the test spike train as one of similar, 

missing or extra categories; meanwhile the global scale 

measure returns a normalized value determining the overall 

similarity between two trains. An AP is considered similar if 

it occurs in time vicinity of one of APs in the desired spike 

train. This vicinity time interval is called similarity range 

and determines acceptable jitter between spike pairs in the 

test and desired spike train- generally, similarity range is less 

than half of refractory period. The overall similarity of two 

spike trains are defined by; 

                  (6) 

   is the number of similar spikes;    and    

correspondingly denote number of spikes in the desired and 

test spike trains. Figure 2 represents the similar, missing and 

extra spikes, in which   gets value of 0.4. 

Similarity of two spike trains are increased by reducing 

number of missing and extra spikes. To increase the 

similarity, membrane potential at extra spikes needs to be 

dropped below firing threshold, at the same time membrane 

potential of missing spikes need to be increased above 

threshold. The learning algorithm corresponds to membrane 

potential changes leading to increase the overall similarity 

between two spike trains. 

B. Learning Algorithm 

The learning algorithm modifies synaptic parameters to 

minimize the following objective function: 

                 
           

     (7) 

Variable       is the neuron membrane potential and 

variable        is the desired potential at   . In equation (7), 

   represents time of similar, missing or extra spikes.        

is equal to      ,    , at similar and missing spike 

times, and it is       at extra spikes. Though   is assumed 

to be a constant value, it is shown that   can be defined by 

overall similarity of two trains increasing learning speed 

[14]. The learning algorithm applies a recursive gradient 

descent search in synapse parameter space minimizing 

dissimilarity between the test the target spike trains [14]. 

The learning algorithm is defined by: 

  

  
                   

          
   

      

  
 (8.a) 

      
  

  
 (8.b) 

Both of       and 
      

  
 are recursively updated using 

equations (2) and (3), and   determines learning rate. The 

the learning process is recursive updates of equations (2), 

(3), (8) plus similarity measure process. 

C. Reward STDP Learning 

The learning algorithm (8.a) is comprised of two terms: a) a 

positive or negative term,             - determining 

temporal performance of the network, b) local gradient of 

each individual synapse relative to its internal parameters- 
      

  
.  

In reward learning algorithm, each individual unit of a 

system is rewarded or punished equally depending to the 

system response to a stimuli. Similarly, the term       
       plays the same rule in supervised learning. In reward 

learning, the reward      - equal to              in 

supervised learning- can be generalized to a more 

sophisticated evaluative function of the network output, and 

it can be defined without the desired spike train. The 

gradient term can be rewritten as; 

   
     

  
  

   

  
       

   

  
 

   

  
          

   
   

  
       

   

  
 

   

  
                   (9) 

   is a defined by the history of impinging APs and it is not 

limited to only a pair of pre and post synaptic APs.  

The learning rule is defined by two factors: a)    a function 

of pre-synaptic AP time and b)       reward function. The 

reward-based STDP learning rule is defined by; 

             
      (10) 

In contrast to standard STDP learning rule [2], the reward-

based STDP is approximately a causal learning rule. Time 

period of non-causal term is only limited to delay in 

returning reward; where for the proposed similarity measure 

the delay is equal to similarity range. Thus, the reward-based 

STDP can be an online learning rule. Reward-based STDP 

learning rule adjusts synaptic parameters based on synapse 

local activity regulated by overall performance of the 

Similarity Range 

     s               m            s                       e           m                 s       

Test 

Target 

Refractory Period 

Figure 2 Similar (s), missing (m) and extra (e) spikes. The S value is equal 
to 0.4. 
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network. Thus, the learning rule is applicable in larger 

DSNN independent of the network topology and layers. 

IV. APPLICATION 

This section will address a specific application of synapse 

model in building neural model for generating different 

spiking and bursting pattern of the rat cortical neurons [15]. 

The neuron only consists two synaptic connections; the first 

synapse transfers the incoming spike train to the neuron and 

the second one projects the neuron output to itself. ISI of the 

input spike train is a 50 milliseconds, and the objective is 

generating different spiking patterns reported in [15]. There 

are only four free parameters in the model;    and      for 

each synaptic connection are adjusted by the learning 

algorithm. Figure 3 shows regular spiking (RS) and 

chattering spike (CH) neuron output [15] generated by 

neural model in response to the impinging APs. 

In contrast to mathematical model for spike generation [15], 

temporal dynamics of synapses and neuron in this neural 

model has a clear biological interpretation, meanwhile the 

processing is linear. 

V. CONCLUSION 

Two fundamental steps proposed in building biological 

spatio-temporal computational unit. A linear synapse model 

for STP and LTP was introduced, and a generalized reward-

based STDP learning rule applicable in DSNN was defined. 

The proposed model builds a novel biological computation 

unit capable for neural simulation and temporal signal 

processing.  

The main question is the convergence speed and extension 

of the learning rule for large scale DSNN. Both issues plus 

its application in brain cortical simulation and neural-

engineering will be addressed in the coming paper. 

APPENDIX A 

This appendix defines elements of state matrix and input vector for the 
linearized synapse model. Through linearization process the higher term of 

    is set to zero; other term such as           are set to zero too. Both 
of approximations are valid assumption, because of large time constants and 

strong contribution of     term in synapse dynamics. 

Table 1 Nominal values for model parameters 

Parameter  Value 

   Facilitation Time Constant 100 msec 

   Resting Facilitation 0…1 

    Facilitation Increment Factor 0…1 

   Vesicle Recovery Time Constant 200 msec 

     Maximum Number of Release Sites 1...1000 

   Rise time of PSP 5 msec 

   Rise time of PSP 5 msec 

                   

          
 

  
                             

 

  
              

                               

          
 

  
      

 

  
            

        
 

  
                               

 

  
 

                                                 

       
 

  
 

  

  
        

       
  

  
         

  

  
   

     

  
         

          
 

  
 

 

  
                

           

  
 

  

  
  

       

      
  

  
        

 

 

 
Figure 3 Neural model for rat cortical neuron a) neural model structure b) 

RS pattern,          
            ,          

             c) CH 

pattern,          
             and          

             

                                   

             
 

  
               

               
 

  
                                      

 

  
  

                                   

             
 

  
               

              
 

  
                                 

 

  
  

REFERENCES 

[1] L. F. Abbott, and Wade G. Regehr, “Synaptic computation,” 

NATURE, Vol 431, Oct 2004  

[2] Abigail Morrison, Markus Diesmann, Wulfram Gerstner, 

“Phenomenological models of synaptic plasticity based on spike 

timing, ” Biol Cybern, 2008, 98:459–478 

[3] Thomas Natschlager,Wolfgang Maass, Anthony Zador, “Efficient 
Temporal Processing with Biologically Realistic Dynamic Synapses, ” 

Network, Feb. 2001;12(1):75-87 

[4] Jim-Shih Liaw, Theodore W. Berger, “Dynamic synapse: Harnessing 
the computing power of synaptic dynamics, ” Neurocomputing 26-27, 

1999, Pages 199-206 

[5] Misha Tsodyks, Klaus Pawelzik, Henry Markram, “Neural Networks 
with Dynamic Synapses, ” Neural Computation 10, 821–835, 1998 

[6] Jeremy S. Dittman, Anatol C. Kreitzer, Wade G. Regehr, “Interplay 

between Facilitation, Depression, and Residual Calcium at Three 
Presynaptic Terminals, ” The Journal of Neuroscience, February 15, 

2000, 20(4):1374–1385 

[7] Gianluigi Mongillo, Omri Barak, Misha Tsodyks, “Synaptic Theory of 
Working Memory, ” Science 319, 1543, 2008 

[8] Jim-Shih Liaw and Theodore W. Berger, “ Dynamic Synapse: A New 

Concept of Neural Representation and Computation, ” 
HIPPOCAMPUS 6:591–600 (1996) 

[9] Thomas Kreuz, Julie S. Haas, Alice Morelli, Henry D.I. Abarbanel, 

Antonio Politi, “Measuring spike train synchrony, ” Journal of 
Neuroscience Methods 165 (2007) 151–161 

[10] Robert Gutig, Haim Sompolinsky, “The tempotron: a neuron that 

learns spike timing-based decisions, ”, Nature Neuroscience, 2006 
[11] Filip Ponulak, Andrzej Kasinski, “Supervised Learning in Spiking 

Neural Networks with ReSuMe: Sequence Learning, Classification, 

and Spike Shifting, ” Neural Computation 22, 467–510 (2010) 
[12] Sander Marcel Bohte, “SPIKING NEURAL NETWORKS, ” PhD 

Thesis, 2003 

[13] Samanwoy Ghosh-Dastidar, Hojjat Adeli, “ A new supervised 
learning algorithm for multiple spiking neural networks with 

application in epilepsy and seizure detection, ” Neural Networks 22 

(2009) 1419_1431 

[14] Yousefi, A.; Dibazar, A.A.;Berger, T.W.; “Supervised learning in a 

single layer Dynamic Synapses Neural Network, ” IJCNN 2011 
[15] Eugene M. Izhikevich, “Simple Model of Spiking Neurons, ” IEEE 

transaction in neural network, Vol. 14, No. 6, Nov. 2003 

[16] Wulfram Gerstner, Werner Kistler, “ Spiking Neuron Models, ” 
CAMBRIDGE, 2006 

0

0.5

1

1 51 101 151 201 251

b

0

0.5

1C

Input Output

         
   

         
   

a 

1365


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

