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Abstract— Spike trains and local field potentials (LFPs)
are two different manifestations of neural activity recorded
simultaneously from the same electrode array and contain
complementary information of stimuli or behaviors. This paper
proposes a tensor product kernel based decoder, which allows
modeling the sample from different sources individually and
mapping them onto the same reproducing kernel Hilbert
space (RKHS) defined by the tensor product of the individual
kernels for each source, where linear regression is conducted
to identify the nonlinear mapping from the multi-type neural
responses to the stimuli. The decoding results of the rat sensory
stimulation experiment show that the tensor-product-kernel-
based decoder outperforms the decoders with either single-type
neural activities.

I. INTRODUCTION

The rapid advance of micro-electrode arrays and elec-

trophysiological recording techniques opens up new op-

portunities to precisely extract information of stimuli or

behaviors from neural responses. Different types of neural

activity are recorded simultaneously from the same electrode

array, such as spike trains and local field potentials (LFPs),

which encode complementary information of the stimuli or

behaviors [1], [2]. In most recordings, the spike train is

obtained by using a high-pass filter with the cutoff frequency

about 300−500 Hz, while the LFP is obtained by using a

low-pass filter with the cutoff frequency about 300 Hz [3].

The spike train represents the single-unit neural activity with

a fine temporal resolution. However, its stochastic proper-

ties induce considerable trial-to-trial variability, especially

when the stimulation amplitude is small. In contrast, LFPs

reflect the sum of all local currents near the surface of the

electrode, which limits specification but provides robustness

for characterizing the modulation induced by stimuli, even

at low amplitudes. Therefore, an appropriate mergence of

LFPs and spike trains in decoding models make it possible

to more accurately decode the stimuli or behaviors from the

neural response. For example, the decoder can coordinate

LFP or spike patterns to tag particularly salient events or

extract different stimulus features characterized by different

type signals.
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The different signal properties between LFPs and spike

trains make merging in the same model difficult. First, the

underlying stochastic properties are totally different between

the two representations. A spike train that is a set of spike

timings can be interpreted as a realization of a point pro-

cess [4], [5], while LFP is a continuous amplitude process.

Moreover, the time scale of LFPs is significant longer than

spike trains. In this paper, we propose a tensor-product-

kernel-based regressor to decode the stimulus information

from multi-type neural activities. The tensor product kernel

allows modeling different types of signals individually and

merge their information in the feature space defined by

the tensor product of the individual kernels for each type

signal [6].

Spike trains characterize stimulus information with a fine

time resolution but a large variability. Most decoding tech-

niques have been applied to discretized representations of

spike trains [7], [8], [9], which has limited applicability

for systems requiring a fine time resolution. With a small

discretization size, the input space becomes sparse and the

dimensionality of the input space also becomes a problem

(curse of dimensionality). Instead, the set of spike time

occurrences provides a more effective and accurate descrip-

tion of spike trains, but the space of spike trains is not a

conventional L2 functional space, i.e., operations such as

addition and multiplication can not be applied. Therefore,

this paper models spikes by using the Schoenberg kernel

defined in the spike timing space [10], which decreases

the computation time in contrast with the kernels based on

the conventional rate representation and avoids sparse high-

dimensional vectors corresponding to binned spike trains. In

contrast, the LFPs, as a continuous process, are modeled

by the Schoenberg kernel defined in the continuous space

on the time structure (nonlinear correlation), which is able

to enhance the robustness of stimulus estimation. The tensor

product of the two kernels map data into a joint kernel feature

space, where the kernel least mean square (KLMS) algorithm

estimates the nonlinearly mapping from the neural response

to the stimuli as necessary in somatosensory stimulation

studies.

II. TENSOR PRODUCT KERNEL

We utilize distinctive kernels to map the spike train si

and LFP xi into feature functions ϕ(si) and ψ(xi) in two

RKHSs defined by κx(xi,x j) and κs(si,s j), respectively. In

order to merge the information from LFPs and spike trains,

the tensor product of two kernels incorporate two individual
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RHKSs into a joint kernel defined feature space defined by

κ(xi,si,x j,s j) = κx(xi,x j)κs(si,s j) (1)

Since subsequent processing and estimation are conducted

in the kernel space, there are no constrains on the format of

the input signals and their corresponding kernel functions.

Therefore, the kernels for spike trains and LFPs can be

selected individually based on their own stochastic proper-

ties. For spike trains that can be interpreted as observations

of a point process, the Schoenberg kernel [11] defined in

the spike timing space is applied. LFPs are a continuous

amplitude stochastic process and so we also embed their time

structure over the lags in a Schoenberg kernel defined in the

continuous space. Since the stimulus response durations of

LFPs are longer than spike trains, the time scales of their

input sample are specified individually. The tensor product

kernel allows decoding stimuli from multi-type signals with

different timescales.

A. Schoenberg kernel for spike trains

A spike train can be represented as a sequence of or-

dered spike times i.e s = {tm ∈ Ts : m = 1, . . . ,M}, in the

interval Ts = [0,Ts], which can also be written by s(t) =

∑M
m=1 δ (t − tm),{tm ∈ Ts : m = 1, . . . ,M}. This paper utilizes

the Schoenberg kernel [11], [12] on spike trains, which

interprets a spike train as a realization of an underlying

point process and defines an injective mapping based on

a strictly positive definite kernel between the conditional

intensity functions of two point processes defined by [12].

κ(λ (t|H i
t ),λ (t|H

j
t )) = exp(−

‖λ (t|H i
t )−λ (t|H j

t )‖
2

σ2
)

= exp(−

∫

τ(λ (t|H
i
t )−λ (t|H j

t ))
2dt

σ2
), (2)

where σ is the kernel size and H i
t is the history of the process

up to t. The full spike train segment is mapped into a function

in the RKHS.

A practical choice used in this paper estimates the con-

ditional intensity function using a kernel smoothing ap-

proach [12], [13], which allows estimating the intensity

function from a single realization. The estimated intensity

function is obtained by simply convolving s(t) with the

smoothing kernel g(t), yielding

λ̂s(t) =
M

∑
m=1

g(t − tm),{tm ∈ Ts : m = 1, . . . ,M}, (3)

where the smoothing function g(t) integrates to 1. The

rectangular and exponential functions [14], [12] are popu-

lar smoothing kernels, which guarantee injective mappings

from the spike train to the estimated intensity function.

In order to decrease the kernel computation complexity,

the rectangular function g(t) = 1
Ts
(U(t)−U(t − Ts)) (Ts ≫

the interspike interval) is used here, where U(t) is a Heav-

iside function. With the kernel smoothing estimation of the

intensity function, the kernel κ(λ (t|H i
t ),λ (t|H

j
t )) becomes

κs(si,s j) = exp(−

∫

Ts
(λ̂si

(t)− λ̂s j
(t))2dt

σ2
s

), (4)

The Schoenberg kernel defined in the spike timing space

is a strictly positive definite kernel, so it defines a RKHS

that is nonlinearily related to the intensity functions thereby

preserving information beyond crosscorrelation.

Individual LFP or spike train channels are a relatively

poor decoders of stimulus or behavior on a single-trial basis.

Therefore, we defined the kernel for multi-channel spike

trains as follows [6]

κs(si(t),s j(t)) =
N

∑
n=1

κs(s
n
i (t),s

n
j(t)) (5)

Where N is the number of channels of spike trains.

B. Schoenberg kernel for LFP

Since LFP is a continuous signal, the Schoenberg kernel

can also be defined in continuous space to map the correla-

tion time structure of the LFP x(t) into a function in RKHS

in basically the same way,

κx(xi(t),x j(t)) = exp(−
‖xi(t)− x j(t)‖

2

σ2
x

)

= exp(−

∫

Tx
(xi(t)− x j(t))

2dt

σ2
x

) (6)

where Tx = [0 Tx]. Similarly to spike trains, the kernel for

multi-channel LFPs is defined by

κx(xi(t),x j(t)) =
N

∑
n=1

κx(x
n
i (t),x

n
j(t)) (7)

Where N is the number of channels of LFPs. The time scale

of the analysis for LFPs and spikes is very important and

needs to be defined by the characteristic of each signal as

will be explained below.

C. Kernel least mean square (KLMS)

In order to form regression models in the tensor product

kernel space we utilize the kernel least mean square (KLMS)

algorithm developed [15]. The great appeal of kernel-based

filters is the usage of the linear structure of RKHS to

implement well-established linear adaptive algorithms and

to obtain a nonlinear filter in the input space that leads to

universal approximation capability without the problem of

local minima.

The basic idea behind KLMS is to transform the data

[si,xi] given by si = {tm − (i− 1)τ, tm ∈ [(i− 1)τ,(i− 1)τ +
Ts] : m = 1, . . . ,M} (the ith window of the spike time se-

quence obtained by sliding Ts-length window with step τ)

and xi(t) = {x(t), t ∈ [(i−1)τ,(i−1)τ +Tx} (the ith window

of the LFP obtained by sliding the Tx-length window with

step τ) from the input space to a high dimensional feature

space φ(si,xi), where the inner products can be computed

using a positive definite kernel function satisfying Mercer’s

condition κ(si,xi,s j,x j)) =< φ(si,xi),φ(s j,x j) > [15]. For
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our work the RKHS of input signal is defined by the tensor

product kernel. The linear least-mean-square (LMS) algo-

rithm is directly applied in the RKHS defined by the product

kernel κ(si,xi,s j,x j). Let Ω be the filter weight function

(which can be considered an infinite dimensional vector) in

RKHS and [sixi] be the input and φ(si,xi) the transformed

input function in the RKHS, then the regressor output in the

input space is y = 〈Ω,φ(si,xi)〉. During online adaptation Ω
becomes Ω(n) at time n. Following the stochastic gradient

LMS update, the KLMS in the kernel feature space using

a stochastic instantaneous estimate of the gradient vector,

yields

Ω(n) = η
n−1

∑
i=0

eiφ(si,xi) with Ω(0) = 0 (8)

where ei = di − yi and di is the desired signal. Given Ω
and the input φ(sn,xn), the output is given by

yn =< Ω(n),φ(sn,xn)>

= η
n−1

∑
i=1

ei < φ(si,xi),φ(sn,xn)>

= η
n−1

∑
i=1

eiκ(si,xi,sn,xn) (9)

The KLMS algorithm is intrinsically regularized by the step

size, therefore this parameter should be carefully determined

because it also affects the convergence rate [15].

III. EXPERIMENT

A. Rat data

Three female Long-Evans rats (Hilltop, Scottsdale, PA)

were implanted with 32 channel Michigan Probes (Neu-

roNexus Inc.) in the hand region of primary somatosensory

cortex (S1). Neural recordings were made using a mul-

tichannel acquisition system (Tucker Davis). The rat was

placed into a small chamber with a mesh floor which was

suspended above a table. The apparatus helped keep it calm

and stationary even though they remained awake. Spike and

field potential data was preamplified 1000x (filter cutoffs at

0.7 and 8.8kHz) and digitized at 25kHz. LFPs were further

filtered from 1 to 300Hz using a 3rd order Butterworth filter.

Spike sorting was achieved using k-means clustering of the

first 2 principal components of the detected waveforms.

The experimental procedure involved delivering 30-40

short 100ms tactile touches to the rat’s fingers (repeated for

digit pads 1-4) using a hand-held probe. The rat remained

still for the recording durations, and trials were canceled if

the rat changed orientation. The applied force was measured

using a lever attached to the probe that pressed against a

thin-film resistive force sensor (Trossen Robotics) when the

probe tip contacted the rat’s body. The resistive changes

were converted to voltage using a bridge circuit and were

filtered and digitized in the same way as described above.

The digitized waveforms were then de-meaned and filtered

at 1 to 60Hz using a 3rd order Butterworth filter. The first

derivative of this signal is used as the desired stimulation

signal in this paper, which are shown in Figure 1.
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Fig. 1. Data set of the rat sensory stimulation experiment

B. Time scale estimation

The tensor product kernel ( 1) allows modeling the sample

from different sources individually. Therefore, the time scales

of LFPs and spike trains can be specified based on their

own properties. In order to find reasonable time scales, we

estimate the autocorrelation coefficients of LFPs and spike

trains, which indicate the response duration induced by the

stimulation. For this purpose, spike trains are binned with

binsize 1ms. The local field potential are also resampled with

sampling rate 1000Hz. The autocorrelation coefficients of the

each signal average over channels are calculated by

ρ̂h =
∑T

t=h+1(yt − ȳ)(yt−h − ȳ)

∑T
t=1(yt − ȳ)2

. (10)

Its 90% confidence bounds of the hypothesis that the auto-

correlation coefficient is effectively zero are approximately

estimated by ±2SEρ , where

SEρ =

√

√

√

√(1+2
h−1

∑
i=1

ρ2
i )/N. (11)

The average confidence bounds for LFP and spike trains

are [−0.032 0.032] and [−0.031 0.031], respectively. The

autocorrelation coefficients of LFP fall into the confidence

interval after 20ms, while the autocorrelation coefficients

of spike trains die out after 9 ms, as shown in Figure 2.

Therefore, the decoder inputs built from spike train and

LFP are obtained by sliding the window with window size

Ts =9ms for spike train and Tx =20 ms for LFP.
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Fig. 2. Autocorrelation of LPFs and spike trains

C. Decoding results

We now present the results of decoding the tactile stimulus

waveform using KLMS updates operating on the tensor
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product kernel. For comparison, we also apply the kernel-

based decoder on only one type of signals to find out what

is the performance enhancement gained by using multi-type

signals. Time discretization is 5 ms. The learning rates for

each decoder are determined by the best results of test

data after scanning the parameters. The kernel size σs and

σx are determined by the average distance in RKHS of

each pair of training samples. The normalized mean square

error (NMSE) between the estimated stimulation (y) and the

desired stimulation (d) is utilized as an accuracy criteria.

NMSEs are obtained across 8 trials data sets. For each

trial, we use 20s data to train the decoders and compute an

independent test error on the remaining 2.5s data. The results

are shown in Table 1. the LFP&spike decoder out-performs

both the LFP decoder and the spike decoder.

TABLE I

COMPARISON AMONG NEURAL DECODERS.
❳
❳

❳
❳
❳
❳

❳❳
Property

input
LFP&spike LFP spike

NMSE (mean/STD) 0.48/0.05 0.55/0.03 0.63/0.11
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Fig. 3. Results of the LFP&spike decoder of the first stimulation trial.

In order to illustrate the details of the decoding perfor-

mance, the test results of the first trial are illustrated in

Figure 3. It is observed that the output of the spike decoder

fluctuates enormously and misses some pulses, i.e., around

0.65 s, because of the sparsity and variability of the spike

train. In contrast, the output estimated by LFP is smooth,

because the LFP reflects the sum of all local currents on the

surface of the electrodes, which causes the robustness but

the limitation of the specification. The LFP&spike decoder

preforms better than LFP decoder by gaining the precise

pulse timing information from spike trains. The learning

curves are also estimated by calculating the testing NMSE

after the model parameter updated after each new sample

entered. Three learning curves of spike decoder, LFP decoder

and LFP&spike decoder are shown in Figure 4, respectively.

IV. CONCLUSION

Spike trains and LFPs encode complementary aspects

of stimulus and behavior. However, the two signals have

vastly different stochastic properties and are often modeled

separately with different algorithms. Merging the two signals

effectively is important for enhancing decoding performance.

In this paper, we use a tensor product to merge two sepa-

rate Schoenberg kernels: one defined in spike timing space
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Fig. 4. Learning curves (NMSE of the test set) of the LFP&spike decoder
of the first stimulation trial.

for spikes and one defined in continuous space for LFPs.

The decoder also allows modeling LFPs and spikes with

different time-scale parameters, which can be determined

experimentally. We applied this algorithm to decoding tactile

stimulations in the rat. In this setting, using both spikes and

LFPs for decoding enhances performance over using each

signal separately.
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