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Abstract— Internal models have been proposed to explain the
brain’s ability to compensate for sensory feedback delays by
predicting the sensory consequences of movement commands.
Single-neuron studies in the oculomotor and vestibulo-ocular
systems have provided evidence of internal models, as have
behavioral studies in the skeletomotor system. Here, we present
evidence of internal models from simultaneously recorded popu-
lation activity underlying closed-loop brain-computer interface
(BCI) control. We studied cursor-based BCI control by a
nonhuman primate implanted with a multi-electrode array in
motor cortex. Using a novel BCI task, we measured the visual
feedback processing delay to be about 130 milliseconds. By
examining the task-based appropriateness of the population
activity at different time lags, we found evidence that the subject
compensates for the feedback delay by predicting upcoming
cursor positions, suggesting the use of an internal forward
model. Lastly, we examined the time course of internal model
adaptation after altering the mapping between population
activity and cursor movements. This study suggests that closed-
loop BCI experiments combined with novel statistical analyses
can provide insight into the neural substrates of feedback motor
control and motor learning.

I. INTRODUCTION

How does the motor system compensate for sensory

feedback processing delays? Internal models could enable

the brain to predict the result of a motor command before

sensory feedback reflects movement execution [1]. Single-

neuron studies have implicated internal models in the ocu-

lomotor [2] and vestibulo-ocular [3] systems. Behavioral

studies of arm reaching also provide evidence of internal

models (for review, see [4]), but neural correlates thereof

have been limited due to the complexities of the skeletomotor

control system. In particular, arm movements involve large

numbers of neurons across multiple brain areas that drive a

nonlinear effector. Multiple modalities of sensory feedback

contribute to control, where each modality has its own

associated delays and coordinate frames.

In this work we consider a cursor-based brain-computer

interface (BCI), which can be viewed as a simplified motor

control system. In BCI, the activity of all neurons that drive

the cursor is fully observed, the relationship between neural

activity and cursor movements (i.e., the BCI decoder) is

known and determined by the experimenter, and only visual

feedback is presented to the subject. Although we are also
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interested in the assistive benefits of BCI, here we leverage

BCI infrastructure for basic scientific studies of feedback

motor control.

In this study, we asked the following three questions:

(i) What is the subject’s visual feedback delay during BCI

control? (ii) Is there evidence that the subject uses an internal

model to compensate for the feedback delay? (iii) What is the

time course of internal model adaptation during BCI learn-

ing? Section II describes the closed-loop BCI experiments,

and Section III investigates the three questions above.

II. METHODS

Experimental details were previously described in Chase

et al. [5]. Briefly, a 96-electrode Utah array was implanted

in proximal arm area of motor cortex (M1) in a Rhesus

monkey (Macaca mulatta). Across 89 experimental sessions,

single- and multi-unit spikes were sorted, and spike counts

from 15-40 units were recorded in ∆t ≈ 33 millisecond

non-overlapping bins. Two-dimensional cursor velocity was

linearly decoded from recorded spike counts according to

vt = B1(ut − b0) (1)

where vt ∈ R
2 is the decoded cursor velocity at timestep t,

ut ∈ R
q is the spike count vector across q simultaneously

recorded units at timestep t, and {B1 ∈ R
2×q, b0 ∈ R

q} are

decoding parameters determined by the population vector

algorithm (PVA) [6]. The BCI cursor position, pt, was

determined by integrating time-averaged decoded velocities

pt = pt−1 +

(

1

5

4
∑

k=0

vt−k

)

∆t (2)

We analyzed two types of 16-target center-out BCI cur-

sor control experiments: (i) invisible zone (IZ) experiments

enabled us to characterize strategies for feedback delay com-

pensation; and (ii) rotation perturbation (RP) experiments

enabled us to test predictions about the subject’s internal

model. In IZ trials, the cursor began at the workspace

center, but was not presented to the subject until its decoded

position exited a workspace-centered circular invisible zone.

We analyzed 10,320 successful IZ trials recorded over 69

sessions. We also analyzed 20 RP experiments. In RP trials,

the cursor was always visible to the subject, but following

a control session (typically 160 trials) came a perturbation

session (typically 240 trials), in which decoding parameter

B1 was switched to B2 such that 50% of the recorded

units’ preferred directions were rotated by 60◦ in the decoder

(equivalent to rotating the corresponding columns of B1 by

60◦). In both IZ and RP experiments, a trial was deemed
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successful and terminated as soon as the cursor visibly

overlapped with the target.

III. RESULTS

A. Visual Feedback Delay

We used IZ experiments to characterize the visual feed-

back delay experienced by a subject operating our BCI

system. During the initial portion of each trial, the subject

directs the cursor toward the target, but with some initial

error due to the absence of visual feedback before the cursor

emerges from the invisible zone (Fig. 1A). Once the cursor

exits the invisible zone, visual and motor processing delay

the generation of corrective neural commands in M1. We

quantified this visual feedback delay by estimating the time at

which recorded neural activity first began to correct the initial

error. For each IZ trial, we computed an error trajectory,

defined as the timestep-by-timestep angles between decoded

velocity (from equation 1) and the cursor-to-target direction.

We aligned each trial’s error trajectory according to the

timestep of the first cursor presentation (i.e., upon exiting the

invisible zone), and averaged across trials. The first reduction

in mean angular error occurred four timesteps after the cursor

exited the invisible zone (triangle in Fig. 1B), indicating

that the subject’s visual feedback delay was roughly four

timesteps, or about 130 milliseconds. This result is consistent

with previous reports of single-cell latencies in M1 [7].

B. Strategies for Feedback Delay Compensation

What aiming strategy does the brain employ to compensate

for the visual feedback delay? We asked whether the subject

aims from an outdated visual feedback of cursor position

(Strategy 1) or from an internal prediction of the current

cursor position (Strategy 2). The following analyses are

based on the four-timestep visual feedback delay determined

in Section III-A. At a particular timestep, we asked whether

decoded velocity from the current neural command was more

appropriate for aiming from the four-timestep-old visual
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Fig. 1. Estimating visual feedback delay. (A) Cursor trajectory (black line)
to a target (green circle) during an IZ trial. Angular aiming error is shown
for the third timestep after the cursor exited the invisible zone (gray circle).
Solid red line shows the direction of the decoded velocity (from equation 1).
Dashed red line shows the smallest angular correction that would bring the
cursor (dashed red circle) to the target and achieve task success. (B) Trial-
averaged angular errors for IZ trials, indicating error correction (triangle)
four timesteps following cursor visibility. Shaded region indicates +/- SEM
(n = 10, 320).

feedback of cursor position (Strategy 1) or from the current

cursor position (Strategy 2).

If the subject aims from the most recent feedback

(Strategy 1), the decoded velocity applied at the current

cursor position will not push the cursor straight toward the

target, as illustrated by the solid blue arrow in Fig. 2A.

However, if the subject can predict the current cursor position

and aim from this prediction to the target (Strategy 2), the

decoded velocity will push the cursor straight toward the

target, as shown by the solid red arrow in Fig. 2B. Strategy 2

posits that internal estimates are consistent with actual cursor

positions. We asked whether the recorded neural activity was

more consistent with Strategy 1 or Strategy 2.

To discriminate between these two aiming strategies upon

observing a neural aiming command at timestep t, we

computed (i) angular aiming error when the decoded velocity

vector is shifted to begin at the four timestep-old cursor

position, pt−4 and (ii) aiming error when the velocity

vector is unshifted (i.e., when the vector originates from the

current cursor position, pt). If the subject aims from the
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Fig. 2. Comparison of aiming strategies.
(A) Strategy 1—aim from the most
recently perceived visual feedback,
which is four timesteps old. (Left)
Hypothetical trial under Strategy 1.
When applied to the current cursor
position (unshifted), the aim-from-
feedback velocity command (solid blue
arrow) would result in the cursor (blue
circle) missing the target (green circle)
by 23◦ . (Right) Hypothetical results
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Real Data

from assessing angular errors of shifted and unshifted neural commands
generated according to Strategy 1. (B) Strategy 2—aim from current cursor
position. (Left) Hypothetical trial under Strategy 2. (Right) Hypothetical re-
sults from assessing angular errors of neural commands generated according
to Strategy 2. (C) Averaged angular error across 9,750 IZ trials. Decoded
velocities had smaller angular errors when assessed from unshifted cursor
positions than when shifted to originate from cursor positions occurring
four timesteps earlier (p < 0.001). Neural activity was more consistent
with Strategy 2 than Strategy 1. Error bars (barely visible) indicate +/- SEM
(n = 9, 750).
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feedback, the shifted velocity decode will have zero error,

while the unshifted decoded velocity will have nonzero error

(Fig. 2A-right). If the subject aims from the current cursor

position, the shifted decode will yield nonzero error, while

the unshifted decode will yield zero error (Fig. 2B-right).

We assessed the four-timestep-shifted and unshifted veloc-

ity decodes across the first seven timesteps of each IZ trial

such that all shifted positions were visible to the subject. Of

the 10,320 IZ trials in our dataset, we analyzed the 9,750

trials for which target acquisition required four or more

timesteps beyond the invisible zone exit time. We found

Strategy 2 to be more consistent with the neural data. As

shown in Fig. 2C, decoded velocity vectors had smaller

angular errors when assessed as originating from the current

cursor position, rather than from the four-timestep-old cursor

position.

Taken in combination with our characterization of the

visual feedback delay, these results indicate that despite only

having access to the true cursor position four timesteps ago,

the subject’s current neural command reflects knowledge of

the current cursor position. This neurophysiological evidence

suggests that the subject uses an internal forward model to

predict the current cursor position.

C. Timescale of Internal Forward Model Adaptation During

Closed-loop BCI Control

Next, we examined the timescale of internal model adap-

tation. In general, the subject’s internal model cannot be di-

rectly measured, but with the appropriate experimental setup,

we can reasonably approximate the subject’s internal model.

In RP experiments, we assumed that after 160 consecutive

trials of proficient BCI cursor movements under the control

session decoder (B1 from equation 1), the subject developed

an internal forward model that was consistent with B1. We

asked to what extent recorded neural commands remained

appropriate under B1, when the decoder was switched to a

perturbation session decoder (B2, as described in Section II).

The B2-decoded cursor trajectory during the first trial of

a perturbation session is shown in Figure 3A, along with a

set of “whiskers” illustrating how the same recorded neural

activity would have driven the cursor under B1. Interestingly,

these whiskers all point toward the target, even when the

actual cursor velocity does not. A particular whisker can

be interpreted as the unfolding of internal cursor position

estimates through forward model B1. For example (Fig.

3B), suppose that at timestep t the cursor is at position

pt. Given the four-timestep feedback delay, pt−4 is the

most recent cursor position perceived by the subject. By

internally propagating previously issued neural commands

through B1, the subject can aim from an internal estimate

of the timestep t cursor position (small open red circles in

Figs. 3A and 3B). The whisker segment beyond the open

circle represents the subject’s intended aiming command

to push the cursor to its timestep t + 1 position. In this

analysis, cursor positions, whisker positions and velocity

commands were filtered according to equation 2. For the

timestep highlighted by Fig. 3B, the cursor would have hit

the target had it continued straight along the issued aiming

command, and thus the aiming command incurs zero error

under forward model B1. If the subject was operating under

an internal model B2, the subject’s timestep t estimate of

cursor position would be the actual position, pt, and the

resulting neural command would have missed the target by

51◦.

Consider the scenario in which the subject’s internal model

completely adapts from B1 to B2. In this case, the subject’s

internal estimate of the current cursor position would always

exactly match the true current cursor position, despite the

fact that the visual feedback delay prevents the subject from

directly observing the current cursor position. Additionally,

the subject’s next aiming command would match the actual

BCI cursor velocity. By comparing perturbation session

angular errors associated with the B1-decoded whiskers to

angular errors in the actual, online cursor velocities, we can

determine the extent to which the subject’s neural activity

reflected internal model B1 or B2.

Averaging across the perturbation sessions of twenty RP

experiments, we found that angular aiming errors corre-

sponding to B1 predictions remained significantly lower than

those corresponding to B2 for the first 48 trials (p < 0.05),

and 80 trials following the decoder switch, this trend reversed

such that errors corresponding to B1 predictions were sig-

nificantly higher than those corresponding to B2 (p < 0.05).

This trend continued without reaching a plateau in corre-

sponding error angles throughout the 240 trials we analyzed

across all experiments. Thus we found that the subject’s

internal model adapts to become increasingly consistent with

B2, while becoming inconsistent with B1.

IV. DISCUSSION

Despite the rather substantial visual feedback delay we

identified (130 milliseconds), we show that the subject’s

neural activity reflects the most recently displayed cursor po-

sition, implicating an internal model for BCI cursor control.

We show that when cursor dynamics are perturbed, neural

activity is initially consistent with an internal model of the

original cursor dynamics, and adapts through experience to

reflect an internal model consistent with the perturbed cursor

dynamics.

Neural activity during IZ trials was more consistent with

aiming from current cursor positions than from previous

positions. This result specifically informs BCI decoder cali-

bration procedures, which require paired examples of move-

ment intention and neural activity. When calibrating a de-

coder based on examples of cursor control, the experimenter

typically chooses from the following two assumptions: (i)

intended movement direction points from the current cursor

position to the target [8]; or (ii) intended movement direction

points from a previous cursor position to the target (due to

feedback delay). Our results from Section III-B suggest that

assumption (i) is better than (ii), despite the substantial visual

feedback delay. The same reasoning applies to tuning curve

estimation from closed-loop BCI data [9], [10].
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Fig. 3. Internal model adaptation. (A) The first perturbation trial from an RP
experiment. The B2-decoded cursor trajectory (black line) was displayed to
the subject online. B1-decoded “whiskers” (red lines) were not displayed
to the subject. (B) Aiming errors assessed at a single timestep from the trial
in (A). Using B1 as the forward model, the red whisker achieves zero error.
Using B2 as the forward model, the cursor would have missed the target by
51

◦ . (C) Average angular aiming errors under B1 and B2. Angular errors
for B1 and B2 were computed using the last segment of each whisker,
as in (B). Angular errors were averaged within a trial, then averaged in
non-overlapping blocks of 16 trials and across 20 RP experiments. Trial
numbers correspond to the last trial included when averaging across trials.
Shaded regions indicate +/- SEM (n = 320).

To aim from the current cursor position, Strategy 2 of

Section III-B posits that the subject can perfectly predict

the current cursor position. While we believe this to be

a reasonable assumption, we know it cannot be entirely

true, even when the subject demonstrates proficient control.

Perfect predictions are implausible because (i) it is unlikely

that the subject knows exactly which neurons contribute to

cursor movement, (ii) spike generation involves stochastic

processes, and (iii) there is likely a mismatch between

the subject’s internal model and the decoder. These effects

explain nonzero aiming errors in Fig. 2C and trial-to-trial

variability in cursor trajectories. Because aiming errors are

significant, the subject depends critically on visual feedback,

and it is this dependence that enables us to differentiate

between the aiming strategies presented in Section III-B.

Given the visual feedback delay, how could the subject

predict the current cursor position without knowing the exact

spike counts driving cursor movement? In this work, we take

the view that the activity of recorded M1 neurons reflects a

low-dimensional aiming command. In addition to generating

activity in M1, this aiming command is likely sent in

parallel (i.e., as efference copy or corollary discharge [2],

[3]) to an internal model, possibly in the cerebellum [11]. If

this internal model is appropriately tuned, its predictions can

reasonably approximate the output of the BCI decoder.

Scenarios in which the internal model and effector are

mismatched may offer the greatest insight into the neural

underpinnings of motor control. For example, our analysis

in Section III-C was enabled by inducing a mismatch be-

tween the subject’s internal model and the decoder. In early

perturbation trials, cursor movements were poorly controlled,

despite our finding that neural activity was consistent with

aiming straight to the target under an alternative internal

model.

In this work, experiment design afforded us a reasonable

guess of the subject’s internal model. If instead we were able

to estimate the subject’s internal model directly, we might be

able to better explain neural activity and, in theory, track

the subject’s internal model during adaptation. Statistical

techniques designed to extract internal models from neural

activity will enable more precise investigation of closed-loop

motor control and motor learning.
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