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Abstract— Computing the template, or the mean, of a set of
spike trains is a novel and important task in neural coding. Due
to the random nature of spike trains taken from experimental
recordings, probabilistic and statistical methods have gained
prominence in examining underlying firing patterns. However,
these methods focus on modeling neural activity at each given
time and therefore their results depend heavily on model as-
sumptions. Taking a model-free and metric-based approach, we
analyze the space of spike trains directly and reach algorithms
for estimating statistical summaries, such as the mean spike
train, of a given set. In our data-driven approach the mean is
defined directly in a function space in which the spike trains
are viewed as individual points. Here we develop an efficient
and convergence-proven algorithm to compute the mean spike
train in a general scenario. Experimental result from a neural
recoding in primate motor cortex indicates that the estimated
means successfully capture the typical patterns in spike trains.
In addition, these mean spike trains provide an accurate and
efficient performance in decoding motor behaviors.

I. INTRODUCTION

Classical mathematical frameworks on spike trains have

largely been based on parametric or semiparametric prob-

ability models, such as Poisson processes or other point

processes [1], [5]. These methods are now widely used for

reaching scientific conclusions from experimental results [2],

[6]. However, they only focus on parametric representations

at each given time and therefore can prove limited in data-

driven problems in the space of spike trains directly. For

example, if we look each spike train in a sample as one single

point in an infinite dimensional spike train function space, in

a non-parametric way, we may be interested in measuring the

central tendency (or mean) of the sample and the associated

variability. In this case, time-based stochastic models will not

be suitable to use, and an overall measurement in the function

space is desired for characterizing spike trains across the

entire time domain.

In a recent paper [11], we have proposed a principled,

data-driven framework to address this issue where we pro-

pose metric-based summary statistics in the function space

occupied by spike trains. We introduced a parametrized fam-

ily of metrics that takes into account different warpings in the

time domain. These new metrics are essentially penalized L p

norms, involving appropriate functions of spike trains, with

penalties associated with time-warping. The notion of means

of spike trains was then defined based on the new metrics

when p= 2 (corresponding to the “Euclidean distance”). This

*This work was supported in part by the grants NSF IIS-0916154 to WW
and NSF DMS-0915003 and ONR N00014-09-1-0664 to AS. We thank Prof.
Nicholas Hatsopoulos for providing experimental data.

W. Wu and A. Srivastava are both with the Department of Statis-
tics, Florida State University, Tallahassee, FL 32306, USA. Emails:
wwu@stat.fsu.edu, anuj@stat.fsu.edu

“Euclidean” property turns out to be essentially important to

compute the templates, or means, in the spike train space.

Once the templates are obtained, we have a more ambitious

goal to develop various classical statistical inferences such as

hypothesis tests, confidence intervals, functional PCA, and

regressions, in the function space such as those presented

in [7]. This new set of tools are expected to provide an

alternative pathway to the classical methods for spike train

analysis such as firing rate models and temporal models [8],

[6].

However, the current result on estimating mean spike train

is based on a strong assumption that the penalty coefficient h
(see Eqn. 1) is sufficiently small. This assumption limits the

applicability of the estimate as certain amount of constraint

on time warping is often needed to balance the matching

and degree of warping. In this paper, we extend our inves-

tigation by proposing an efficient algorithm, call Matching-

Centering-Pruning (MCP) algorithm, to compute the mean

spike train of a set of spike trains with arbitrary number

spikes for any penalty coefficient h > 0. We demonstrate

that the MCP algorithm converges over iteration. We then

perform a distance-based classification using the estimated

mean in an experimental data from primate motor cortex

and obtain desirable result.

II. THEORY AND METHODS

A. Metrics between Spike Trains

In [11], we have defined a new family of metrics between

two spike trains. The metrics correspond to the classical L p

norm for 1 ≤ p < '. In particular, when p = 2, the metric

corresponds to the standard L2 Euclidean distance. Here we

briefly review the definition and algorithm for the metrics.

1) Definition Review: Assume S(t) is a spike train with

spike times 0 < t1 < t2 < · · ·< tM < T , where [0,T ] denotes

the recording time domain. That is,

S(t) =
M

-
i=1

b (t − ti), t ∈ [0,T ] ,

where b (·) is the Dirac delta function. We define the space

of all spike-trains containing M spikes to be SM and the

set of all spike-trains to be S = ∪'
M=0SM. To simplify the

notation, for any spike train S ∈S , we use [S] to denote the

set of all spike times in S (e. g. if S(t) = -b (t − ti), then

[S] = {ti}). For any finite set U , we use |U | to denote the

cardinality (i.e. number of elements) of that set.

Let K be the set of all time warping functions on the do-

main [0,T ], in which a : [0,T ]→ [0,T ] is a time-warping if, in
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addition to being continuous and (piecewise) differentiable,

it satisfies these three conditions:

a(0) = 0, a(T ) = T, 0 < ȧ(t)< '.

It is easy to verify that K is a group with the operation being

the composition of functions.

Assume f (t) = -M
i=1 b (t − ti) ∈SM and g(t) = -N

j=1 b (t −
s j) ∈ SN are two spike trains in [0,T ]. For the set of time-

warping functions K, and constants 1≤ p<' and 0< h <',

we define a metric between f and g in the following form:

dp[h ]( f ,g)= inf
a∈K

(
X([ f ], [g◦ a ])+h

∫ T

0
|1− ȧ(t)1/p|pdt

)1/p

,

(1)

where X(·, ·) denotes the cardinality of the Exclusive OR (i.e.

union minus intersection) of two sets. That is,

X([ f ], [g◦ a ]) = M+N − 2
M

-
i=1

N

-
j=1

1{a(ti)=s j}

where 1{·} is an indicator function.

The first term, X([ f ], [g◦ a ]), in Eqn. 1 is called matching

term which measures the goodness-of-match between f

and g in presence of warping. The second term,
∫ T

0 |1−
ȧ(t)1/p|pdt, is called penalty term and it penalizes the amount

of warping. The constant h (> 0) is the penalty coefficient.

We emphasize that dp is a proper metric; that is, it sat-

isfies non-negativity, symmetry, and the triangle-inequality.

Indeed, dp shares a lot of similarities to the classical Lp norm

in functional analysis. When p = 2, the distance d p can be

viewed as a penalized classical “Euclidean distance” between

two spike trains. We note that the d p metrics generalize the

commonly-used Victor-Purpura metric [10] and van Rossum

metric [9] when p = 1 and 2, respectively.

2) Optimal Time Warping between Two Spike Trains:

To examine the optimal warping function for the infimum

in Eqn. 1, we at first define the set of all piecewise linear

warping functions from spike times {t i} (in f ) to {s j} (in g).

That is, for a desired a , in addition to meeting the conditions

for functions in K, it also salsifies:

1) It is continuous, increasing, and piecewise linear from

[0,T ] to [0,T ];
2) The set of all interior nodes of the pieces (i.e. excluding

0 and T ), {al}, is a subset of {ti};

3) The set of the mappings of all interior nodes, {a(a l)},

is a subset of {s j}.

We denote this set by K f ,g, which is a (finite) subset of K.

One can prove (detail is omitted due to space limitation) that

there exists a warping function a ∗ ∈ K f ,g, such that

dp[h ]( f ,g) =

(
X([ f ], [g◦ a∗])+h

∫ T

0
|1− ȧ∗(t)1/p|pdt

)1/p

.

In [11], we proposed an efficient dynamic programming

(DP) procedure to compute the d p[h ] distance between any

two spike trains. This procedure is mathematically validated

because the optimal warping function in Eqn. 1 has a

piecewise linear form on spike times between two trains,

which can be efficiently estimated by a DP process. Assume

the numbers of spikes in f and g are M and N, respectively,

the computational cost will be in the order of O(MN).

B. Mean Spike Train in S under d2

For spike trains S1,S2, · · · ,SN ∈S where the correspond-

ing number of spikes are {n1,n2, · · · ,nN} (arbitrary non-

negative integers), we have defined their sample mean using

the classical Karcher mean under the “Euclidean” d2 distance

[4] as follows:

S∗ = arg min
S∈S

N

-
i=1

d2(Si,S)
2. (2)

When the mean spike train S∗ is known, the associated

(scalar) sample variance, m 2, can be defined in the following

form,

m2 =
1

N

N

-
i=1

d2(Si,S
∗)2. (3)

The computation of m 2 is straightforward, and the main

challenge is to compute S∗ for arbitrary value of h .

1) Estimation of Mean Spike Train: For the mean spike

train S, there are two unknowns: the number of spikes

n and the placements of these spikes in [0,T ]. In [11],

we showed that when h < 1/(2NT ), the sum of squared

distance is dominated by the sum on the matching terms.

Therefore, we can at first identify n, which turns out to be the

median of {n1,n2, · · · ,nN}. Then we proposed a Matching-

Minimization (MM) algorithm to find the placements of the

n spikes. However, for general value of h > 0, neither the

matching term nor the penalty term will be dominant, and

therefore we cannot identify the number of spikes in the

mean before estimating their placements.

We here propose a general algorithm to estimate the mean

spike train. We initialize the number of spikes, n, in the

mean spike train to be the maximum of {n1,n2, · · · ,nN},

and then reduce the value of n during the iteration. The

iterative process is analogous to the MM-algorithm except

that we add a pruning step to remove redundant spikes in

the mean during the iteration. We refer to this new method

as Matching-Centering-Pruning (MCP) algorithm, where the

centering step is equivalent to the minimization step in the

MM-algorithm. This MCP-algorithm is described as follows:

1) Let n = max{n1,n2, · · · ,nN}. (Randomly) set initial

times for the n spikes in [0, T ] to form an initial S.

2) Matching Step: Using the dynamic programming pro-

cedure to find the optimal time matching from S i to S,

i = 1, · · · ,N. That is,

ai = arg min
a∈K

(X([Si ◦ a ], [S])+h ||1−
√
ȧ ||2)

3) Centering Step:

a) Compute the extrinsic mean of {a1, · · · ,aN}, de-

noted by ā .

b) Apply ā−1 on S and Si ◦ ai. That is, the mean

spike train and aligned trains are updated as

S(∗)= S◦ ā−1, (Si◦ai)
(∗) = Si◦ai◦ ā

−1, i= 1, · · · ,N.
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4) Pruning Step:

a) For each spike sk ∈ S(∗), count the number of

times sk appear in {[(Si ◦ ai)
(∗)]}N

i=1. That is,

hk = |{1 ≤ i ≤ N|sk ∈ [(Si ◦ ai)
(∗)]}|.

b) Remove the spikes from [S(∗)] which appear at

most N/2 times in {[(Si◦ai)
(∗)]}. Denote the new

set of spikes as [S̃(∗)]. That is,

[S̃(∗)] = {sk ∈ [S(∗)]|hk > N/2}.

c) Let [S̃(∗)
−
] be [S̃(∗)] except that one spike with

minimal number of appearance is removed (ran-

domly take one if there are multiple spikes at the

minimum). That is, let k̃ ∈ arg min
1≤k≤n

{hk|hk >N/2}.

Then

[S̃(∗)
−
] = {sk ∈ [S̃(∗)]|k �= k̃}.

d) If -N
i=1 d2(Si, S̃(∗)

−
)2 ≤ -N

i=1 d2(Si, S̃(∗))
2,

then update the mean S = S̃(∗)
−

, and the

number of spikes n = |S|.
Otherwise,

update the mean S = S̃(∗), and the number

of spikes n = |S|.

5) If the sum of squared distance stabilizes over steps 2

to 4, then the mean spike train is the current estimate

and stop the process. Otherwise, go back to step 2.

Denote the estimated mean in the jth iteration as S ( j). One

can show (detail is omitted due to space limitation) that the

sum of squared distances (SSD), -N
i=1 d2(Si,S

( j))2, decreases

iteratively. As 0 is a natural lower bound, -N
i=1 d2(Si,S

( j))2

will always converge when j gets large. In practical appli-

cations, we find the process only takes a few iterations to

reach a reasonable convergence of the SSD and the mean

spike train.

In general, when the penalty coefficient h gets large, the

optimal time warping between spike trains will choose to

have few matchings between spikes to lower the warping

cost. Some of the spikes in the mean will be removed

during the iteration to minimize the SSD. In the extreme

case when h is sufficiently large, any time warping would

be discouraged and the mean spike train will be an empty

train (i.e. a train with no spikes). This result indicates that in

order to get a meaningful estimate, h should not take a very

large value. We have proposed an empirical value range of

h to balance the contributions between matching term and

penalty term [11]. In practical use, one may use a cross-

validation technique to decide its optimal value.

III. EXPERIMENTAL RESULTS

We have developed an efficient and convergent approach,

the MCP-algorithm, to estimate the mean spike train of a

set of spike trains for arbitrary penalty coefficient h . In

this section, we will apply this new tool to perform some

statistical analysis on a real experimental recording. This

recording was previously used and clearly described when

we first developed the metrics d p between spike trains [11].

Briefly, a microelectrode arrays was implanted in the arm

area of primary motor cortex (MI) in a juvenile macaque

monkey (Macaca mulatta). Signals were filtered, amplified

and recorded digitally and single units were manually ex-

tracted. The subject was trained to perform a closed Squared-

Path (SP) task by moving a cursor to targets via contralat-

eral arm movements in the horizontal plane. The example

movement in each path is shown in Fig. 1 (extracted from

[11]). Each sequence of 5 targets defined a path, and there

were four different paths in the SP task (depending on the

starting point). In this experiment, we recorded 60 trials for

each path, and the total number of trials was 240. The time

length of each trial varies from 5 to 6 seconds. As the new

metrics are defined on a fixed time interval, we normalize

the kinematics and spiking activity in each trial to 5 seconds.

−6 −2 2

19

23

27

x−position (cm)

y
−

p
o

s
it
io

n
 (

c
m

)

12

3 4

Path 1: 1 --> 2 --> 3 --> 4 --> 1

Path 2: 2 --> 3 --> 4 --> 1 --> 2

Path 3: 3 --> 4 --> 1 --> 2 --> 3

Path 4: 4 --> 1 --> 2 --> 3 --> 4

Fig. 1. Four trajectories of hand movement in the SP task. The four colors
(blue, red, green, and cyan) indicate the trajectories started at corners 1, 2,
3, and 4, respectively, where the corners are also shown in the correspond
colors. The four paths are also described with text legend (on the right side).

Here we will apply the mean spike trains to perform

decoding, or classification, on the movement behaviors (four

different paths). We at first selectively choose spiking activity

from one neuron which show significant tuning property over

four different paths. For illustration, 10 spike trains from

each movement path as well as the reaching times at the

five corners are shown in Fig. 2A. Let E denote the average

number of spikes in all four paths in the entire dataset,

and we find E = 32.5. Let h0 = (E +E)/(2T) = 6.5 be the

penalty coefficient that makes equal maximal contribution

from matching term and penalty term (see [11]). Here we

choose three different values of h at (0.1,1,10)h 0, or (0.65,

6.5, 65), to allow different degrees of time warpings.

For the 60 trials in each path, we randomly choose 30 of

them as the training data and the other 30 as the test data.

For the 30 training spike trains, we apply the MCP-algorithm

to compute their mean for h = 0.65,6.5, and 65. The result

is shown in Fig. 2B. We see that the number of spikes in the

mean is a decreasing function with respect to the value of

h . Nevertheless, all these means appropriately represent the

firing patterns in the respective paths. That is, more spikes

in the means where the intensity is high in the original data,

and few spikes where the intensity is low.

The classical pairwise-distance classification [10] has been
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Fig. 2. A. 10 example spike trains generated from each path. The four colors (blue, red, green, and cyan) indicate spiking activity during hand movement
in paths 1, 2, 3, and 4, respectively. Each thin vertical line indicates the time of a spike, and one row is for one trial. B. The mean spike trains of the four
paths in the training data for h = 0.65,6.5, and 65, respectively. Each thin vertical line indicates the time of a spike, and one row is for one path. The
colors are the same as that in A.

examined with the d2 metric where we choose h = 10(E +
E)/(2T ) = 65 (see [11]). Assuming there are N spike trains

in the training and testing data, respectively (N = 30× 4 =
120 in the given SP task), we need to to compute N 2 pairs of

distances (between training and testing trains). To simplify

the computation, a mean-based method can be used where

we classify each test train by the shortest distance to the

four means in the training set. With means pre-estimated

from training data by the MCP algorithm, the computation

in classification will only have the order O(N).
For the 120 test trains (30 trains from each path), we

label each train by the shortest distance to the estimated

four means. The result with all three values of h is shown in

Table I. In contrast to the pairwise classification, the mean-

distance method has comparable accuracies. In particular,

when h = 65, this mean-distance classification reaches high

accuracy at 87.5%(105/120), which is about the same accu-

racy as the classification using pairwise-distances (90%), but

significantly outperforms in terms of efficiency (linear order

vs. quadratic order).

TABLE I

COMPARISON ON CLASSIFICATION PERFORMANCE.

Method Comp Cost h = 0.65 h = 6.5 h = 65

Pairwise Distance O(N2) 30.0% 70.8% 90.0%

Mean-Distance O(N) 28.3% 68.3% 87.5%

IV. DISCUSSION

Based on the novel framework introduced in [11], the

study in this paper significantly extends our investigation on

statistical inferences in the spike train space: 1) We prove that

the optimal time warping between any time spike trains exists

and it has a continuous, piecewise-linear form. This result

provides a solid foundation for the computational algorithm

on the optimal warping function. 2) We propose an effi-

cient, convergence-proven algorithm (the MCP-algorithm) to

compute the mean spike train for any penalty coefficient

h > 0. This algorithm generalizes the MM-algorithm, which

is based on a strong assumption that h is sufficiently small.

Our long-term goal in this study is to build a new set

of statistical inference methods such as hypothesis tests,

confidence intervals, PCA, and regression in the spike train

function space. We emphasize that the new framework is

data-driven and we focus on building a mathematical rep-

resentation for the neural spike train space and generating

a set of inference tools in the space. This is different from

many computational investigations on neural coding which

are often motivated by real neurophysiological mechanisms

[3]. The new set of tools in this project are expected to

provide an alternative pathway for spike train analysis to the

classical methods such as firing rate models and temporal

models [2], [6].
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