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Abstract—Brain-machine interfaces (BMIs) must be carefully
designed for closed-loop control to ensure the best possible per-
formance. The Kalman filter (KF) is a recursive linear BMI al-
gorithm which has been shown to smooth cursor kinematics and
improve control over non-recursive linear methods. However,
recursive estimators are not without their drawbacks. Here we
show that recursive decoders can decrease BMI controllability
by coupling kinematic variables that the subject might expect
to be unrelated. For instance, a 2D neural cursor where velocity
is controlled using a KF can increase the difficulty of straight
reaches by linking horizontal and vertical velocity estimates.
These effects resemble force fields in arm control. Analysis of
experimental data from one non-human primate controlling
a position/velocity KF cursor in closed-loop shows that the
presence of these force-field effects correlated with decreased
performance. We designed a modified KF parameter estimation
algorithm to eliminate these effects. Cursor controllability
improved significantly when our modifications were used in a
closed-loop BMI simulator. Thus, designing highly controllable
BMIs requires parameter estimation techniques that carefully
craft relationships between decoded variables.

I. INTRODUCTION

Brain-machine interfaces (BMIs) drive artificial actuators

using volitional neural activity and have the potential to

restore motor function for patients suffering from spinal cord

injury or other neurological disorders. Experimental demon-

strations in rodents, monkeys and humans have provided

a proof of concept, but marked performance improvements

are needed before BMIs are clinically viable. Recent work

suggests that designing BMIs as closed-loop systems, where

neural activity and the decoding algorithm both contribute

to performance, may be critical to improving performance

[1], [2]. In this view, it is critical to design a BMI decoder

that is easy for the subject to learn and control. Here, we

study the properties of the Kalman filter (KF), a commonly

used decoder in BMI, to understand how its properties may

influence a BMI’s controllability.

The standard KF does not model feedback control, so

it cannot guarantee that it optimally matches the user’s

feedback control strategy. In particular, the standard KF

makes BMI “state” variables fully correlated. (Sec. II-D).
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Figure 1. Task setup and trial timeline. A 2D neural cursor is controlled in
closed loop by a linear BMI. With visual feedback, the subject can partially
correct for decoder errors. Internal decoder feedback is only used in recursive
decoders like the KF.

For instance, in a 2D cursor control task where velocity is

decoded with a standard KF, cursor velocities in perpendic-

ular directions become correlated. In closed-loop operation

of the cursor, this means cursor velocity in one direction

can alter velocity in the other direction (Sec. III-A). This

effect, and other similar effects, resemble force fields (FFs)

in arm control and are unlikely to match the BMI user’s

control strategy. The unpredictability of these disturbances

increases the difficulty of both open-loop and closed-loop

cursor control.

The presence of these undesirable effects in the KF ex-

plains the importance of selecting decoder variables. For

instance, some (but not all) FF effects are eliminated when

the KF decodes velocity-only (VOKF) instead of posi-

tion/velocity (PVKF). This explains experimental results in

[1], [3] where the VOKF outperforms the PVKF in closed-

loop control (CLC). We utilize a control-theoretic design

perspective to identify and eliminate FFs to maximize BMI

controllability.

In an experiment where a non-human primate controlled

a PVKF-based BMI in closed-loop, FFs generated by the

decoder changed unpredictably when the KF parameters were

re-estimated. The unpredictable FF changes seen in experi-

ments indicated that the emergence of FFs was likely to be

a decoder training artifact. Analysis of 87 sessions/decoders

showed that the emergence of FFs had a significant corre-

lation with CLC performance, suggesting that they indeed

reduced BMI controllability. We present a modified PVKF

that overcomes the training limitations of the standard PVKF

and outperforms the VOKF in an online prosthesis simulator

(OPS) which simulates closed-loop cursor control.

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

1314U.S. Government work not protected by U.S. copyright



II. METHODS

A. Electrophysiology

One adult male rhesus macaque (macaca mulatta) was

used in this study. The subject was chronically implanted with

microwire electrode arrays for neural recording. One array

of 128 teflon-coated tungsten electrodes (35µm diameter,

500µm wire spacing, 8 × 16 array configuration; Innovative

Neurophysiology, Durham, NC) was implanted in each brain

hemisphere. Arrays were implanted targeting the arm areas

of primary motor cortex (M1) and dorsal premotor cortex

(PMd). Single and multi-unit activity was recorded using

a 128-channel MAP system and sorted online using Sort

Client (Plexon, Inc., Dallas, TX). Only neural units with

well-identified waveforms were used for BMI control. All

procedures were conducted in compliance with the National

Institute of Health Guide for Care and Use of Laboratory

Animals and were approved by the University of California,

Berkeley Institutional Animal Care and Use Committee.

B. Task

The subject was trained to perform a self-paced delayed 2D

center-out reaching task to 8 targets (1.7cm radius) uniformly

spaced about 14cm diameter circle. After being trained to

perform the task with arm movements, the subject controlled

the cursor using a KF BMI (Sec. II-D) in closed-loop without

overt arm movements. Fig. 1 shows an illustration of the task

setup and trial timeline. Trials were initiated by moving the

cursor to the center target and holding for 400ms. The subject

had an unlimited amount of time to enter the center target

to initiate a trial. Upon entering the center, the reach target

appeared. After the center-hold period ended, the subject was

cued to initiate the reach (via target flash), after which he was

required to move the cursor to the peripheral target within a

given 3s time-limit and hold for 400ms to receive a liquid

reward. Failure to hold at the center or target, or reach the

target within the time-limit, restarted the trial without reward.

Targets were block-randomized to ensure the same number

of reaches to each target in approximately random order.

C. Performance measures

BMI performance was assessed using four metrics:

1) Hold error rate: The occurrence rate of hold errors (at

the peripheral target) on trials where the cursor entered

the target within 3s.

2) Time-to-target: The time elapsed between leaving the

center and entering the target.

3) Length of reach: The distance traveled between leaving

the center and entering the target.

4) Movement Error: the average deviation perpendicular

to the reach direction [4].

Upon successfully initiating a reach (via center-hold), there

were two possible task-errors: failure to reach the peripheral

target in time, and failure to hold at the peripheral target.

Thus, metrics 1 and 2 adequately assessed task performance.

Metrics 3 and 4 quantified the precision and accuracy of con-

trol. Because the task was self-paced, the number of initiated

trials varied significantly across decoders, partly reflecting

subject motivation. To alleviate motivation biases in cross-

decoder performance comparisons, performance metrics were

weighted by the number of initiated trials.

D. The KF in closed-loop BMI

In the PVKF, the xt represents the cursor kinematics:

x(t) =
[

px(t) py(t) vx(t) vy(t) 1
]T

Hereafter, we omit the last term which represents constant

offsets. The KF models of x(t) as a Gaussian process:

x(t + 1) = Ax(t) + w(t), w(t) ∼ N (x̄,W )

Neural firing rate observations (100ms binned spike counts)

ut are modeled as correlated Gaussians where the mean

depends linearly on the state xt.

u(t) = Hx(t) + q(t), q(t) ∼ N (ū, Q)

In our experiment, A and W were biomimetic models of arm

movements and were fixed for all sessions. H and Q were

estimated using closed-loop decoder adaptation (CLDA) to

optimize CLC performance [2]. Spike observations are used

to recursively estimate intended cursor kinematics:

x̂(t) = (In − KtH)A
︸ ︷︷ ︸

Ā

x̂(t − 1) + Kt
︸︷︷︸

B̄

u(t) (1)

Kt = Pt|t−1H
T (HPt|t−1H

T + Q)−1 (2)

where n is the dimension of xt, In is the n-dimensional

identity matrix, Kt is the time-varying Kalman gain and

Pt|t−1 = cov (xt|u1, · · · , ut−1). We defer the full derivation

to [5]. In the VOKF, xt = [vx(t), vy(t), 1]
T

contains only

the velocity components. Position estimates are generated by

“integrating” the decoded velocity: p̂t = kv̂t + p̂t−1, where

k is the rate of the spike count observations (100ms).

Every linear BMI algorithm can be written in the form of

Eq. 1, a time-varying linear dynamical system where Ā is the

state transition matrix. Ā has the same meaning for all linear

BMI algorithms with the same state xt, enabling comparisons

between different linear BMI algorithms. Though Ā and B̄

are technically time-varying in the KF, our experimental KFs

converged in less than 1 minute. We analyzed only the time-

invariant form of the KF, the steady-state KF, because con-

vergence time took a small fraction of experiment time. Thus,

design principles presented here are generally applicable to

linear BMIs.

E. Simulating closed-loop BMI

We simulated CLC of different decoders in an OPS similar

to [6]. At each time, a position was decoded and subsequently

used by the simulated subject to calculate an intended cursor
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Figure 2. In (A), a reach was planned from the center to the peripheral
target, where the trajectory begins green and transitions to red at the end of
the reach. The open-loop trajectory was distorted by a leftward shaking
decoder (B), an upward pushing decoder (C), and a clockwise curling
decoder (D). Though B and C are both “pushing” effects, they have different
mathematical causes (Sec. III-A).

velocity. The intended velocity was always exactly in the

direction of the task target, consistent with our assumptions

about subject behavior when training decoders in closed-

loop [2]. The firing rates of 25 simulated neurons were

Poisson distributed with rate dependent on the neuron’s

preferred direction and the intended movement direction. All

simulations used the same preferred directions. Decoders

were trained using CLDA [2], without prior knowledge of

neural preferred directions. The simulated subject did not

plan movements that compensated for FFs described in Sec.

III-A.

III. RESULTS

A. Recursive decoders can generate “force fields”

An arbitrary Ā can cause links between kinematic variables

that would not exist in normal arm control of a cursor. For

2D linear BMIs:
[

p(t + 1)
v(t + 1)

]

=

[
Tp(t) + Kv(t)
Mp(t) + Nv(t)

]

+ B̄ut (3)

To reference elements of the 2 × 2 matrices T , K, M , and

N , we use the convention T = [[txx, tyx]T , [txy, tyy]T ]. T

and M represent position dependent changes to the cursor

state. K represents “integration” of vt to move the cursor’s

position. When 0 < eigenvalues(N) < 1, the cursor

smoothly decelerates, modeling momentum.

Decoder-dependent distortions can induce kinematic ef-

fects like FFs in arm control, including shaking, pushing, or

curling effects. To illustrate, we show how using a decoder in

open-loop distorts a planned trajectory (Figure 2A). To plan

this trajectory, our simulated subject assumes that the state

transition matrix of the cursor is of the form

Āinternal model =

[
I2 kI2

0 nI2

]

(4)

This is a reasonable internal model–the cursor moves only

if input is applied to make the velocity nonzero, and hori-

zontal/vertical kinematics can be controlled independently. In

the following examples, we generate different types of FFs

by changing at most 2 parameters of Eq. 4.

The cursor becomes intrinsically jumpy if T 6= I2. An

arm control analog is a position-dependent “tremor” FF. In

Fig. 2B, we set txy = 0.9, which results in a leftward

Hold Error Rate Correlation

Decoder Parameters Pearson’s r p

|txx − 1| , |tyy − 1|,|txy | , |tyx| > 0.62 < 10−4

‚

‚B̄[0 : 2, :]
‚

‚

2
0.352 < 10−5

||M ||2 0.35 < 10−3

∆n = |nxx − nyy | 0.273 ≈ 0.01
∆k = |kxx − kyy | 0.267 ≈ 0.01

Table I
SIGNIFICANT CORRELATIONS BETWEEN DECODER PARAMETERS AND

HOLD ERROR RATE.

shaking effect. When the simulated subject performed the

planned reach in open-loop, not accounting for the mismatch,

significant leftward push was exerted on the cursor when its

velocity was small, during the hold period.

M 6= 0 generates position-dependent changes to the cursor

velocity, emulating position-dependent FFs in arm control.

An example is shown in Fig. 2C, where myy = 0.03 pushed

the cursor upward with non-uniform strength dependent on

distance from the origin. The effect was again most signifi-

cant during the target hold, when the intended velocity was

small. In Sec. III-B2, we analyzed the impact of the hold

FF, the position-dependent velocity change at the center of

peripheral targets, since holds imply small intended speed.

Nonzero kxy , kyx, nxy , or nyx cause links between hori-

zontal and vertical kinematics, emulating velocity-dependent

curl FF in arm control. In Fig. 2D, the decoder created

clockwise curl with kxy > 0 and nxy > 0, causing the

open-loop trajectory to overshoot horizontally. K-induced

curl causes direct changes to the position while N -induced

curl causes changes to the velocity, which is not directly

observable. Unlike the previous two FF types, this effect is

more pronounced when cursor speed is large. We analyze the

impact of decoder curl on performance in Sec. III-B3.

B. Correlations between decoder parameters and perfor-

mance

We found significant correlations between CLC perfor-

mance and the emergence of FFs (Sec. III-A). The hold error

rate did not improve significantly over the 2-month course of

the experiment (p > 0.59). The number of units used in the

decoder was also not significantly correlated with the hold

error rate (p > 0.59). To offset learning/fatigue effects, we

analyzed only the first continuous block of use of the decoder

if it was used for at least 100 trials. Decoders that the subject

was less willing to use (fewer trials per second were initiated)

were used in blocks of longer duration to prevent selection

bias (r = −0.204, p < 0.06). 87 decoders were used in

correlations between decoder parameters and performance.

1) FF emergence correlated with increased hold error

rate: Significant correlations between hold error rate and de-

coder parameters are summarized in Table I. Hold error rates

improved when T → I2, M → 0, and
∥
∥B̄[0 : 2, :]

∥
∥

2
→ 0,

implying that position terms should not be included in the

KF state for maximum controllability. Asymmetric horizon-

tal/vertical velocity dynamics (∆n, ∆k) also correlated with

increased hold error rate.
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Figure 3. The horizontal “momentum” parameter nxx is plotted versus
the hold error rate and the mean time-to-target for all decoders. Colors
indicate the number of trials the subject initiates with a given decoder. Larger
“momentum” correlated significantly both with more frequent hold errors
(left) and faster reaches (right).

2) Holding FFs which pushed the cursor towards the

workspace center correlated with shorter reaches: For tar-

gets 0, 2, 3, 4, and 5, mean time-to-target decreased when the

hold FF (Sec. III-A) angle directed the cursor to the center

target (|r| > 0.22, p < 0.04). The typical hold FF angle

for the remaining targets pointed toward the center of the

workspace for unknown reasons.

3) Curl FFs correlated with decreased accuracy: Larger

|kxy| and/or |kyx| were correlated with longer mean reach

length for targets 0, 1, 2, 3, 4, and 7 (r > 0.18, p < 0.05). A

less significant effect was found for the remaining targets

(r > 0.17, p < 0.1). Increasing |nxy| and/or |nyx| was

correlated with increased hold error rate for targets 0, 4, 5,

6, and 7 (r > 0.24, p ≈ 0.021). The equivalent relationship

for the remaining targets was insignificant.

4) Tradeoff between speed and accuracy: In Fig. 3, we

show nxx, the horizontal “momentum”, versus the hold

error rate and mean time-to-target for all decoders. Both

correlations are statistically significant: as nxx increases, hold

error rate increased (|r| > 0.65, p < 10−5) while the mean

time-to-target decreased (|r| > 0.39, p < 2 × 10−4). Similar

relationships exist for nyy , kxx and kxy , reflecting a tradeoff

between accuracy and speed in linear BMIs.

C. Modifying the PVKF for optimal decoder structure

The data in Sec. III-B suggest that many elements of Ā in

Eq. 3 should be 0 to maximize cursor controllability. M → 0,

T → I2, and K → kI2 correlated with improved hold

performance and reaching accuracy. Imposing the restrictions

M = 0, T = I2, K = kI2 onto the PVKF mathematically

eliminates position-dependent FFs explained in Sec. III-A,

implying that the presence of the position-dependent FFs

reduced cursor control. The PVKF under these restrictions

becomes nearly equivalent to the VOKF, with the exception

that k in the PVKF need not be exactly the spike bin width.

Velocity-dependent curl FFs must still be eliminated from

both the VOKF and the PVKF. For the VOKF, we expand

Eq. 2 with the matrix inversion lemma,

KtH =

[

Pt|t−1 − D
(

P−1

t|t−1
+ D

)−1
]

D, D = HT Q−1H

Figure 4. Simulation results: 25 neurons were controlled by a simulated
subject. Both the VOKF and the modified PVKF were trained using CLDA
without prior knowledge of neural preferred directions. The modified PVKF
produces visibly better trajectories than the VOKF.

If HT Q−1H = sI2 and A = aI2, then (I − KtH) A = nI2

and the KF will be curl-free. This constraint must be applied

to the maximum-likelihood estimation of H and Q [5]. We

omit the equivalent PVKF constraint due to limited space.

D. OPS performance of the modified PVKF and VOKF

In the OPS described in Sec. II-E, we found that the

PVKF with modifications described in Sec. III-C had a

significant 23% less movement error than the VOKF over 10

independent simulation runs (2-sample KS test, p < 10−4).

Trajectories from one simulation are shown in Fig. 4. In

the PVKF, k provides an extra degree of freedom in the

plant design. In our experimental data where kxx and kyy are

learned using CLDA, values were between 0.05 and 0.075.

In the VOKF, k is fixed by the spike bin width (Sec. II-D).

IV. CONCLUSION

Interpreting BMI as a feedback control problem allowed

us construct simple design rules to create KF cursors free of

force field effects, which should improve BMI controllability

in closed loop. Thist control-theoretic approach explains

previous studies of closed-loop cursor control where the

VOKF has out-performed the PVKF. The method we employ

for understanding feedback control dynamics scales easily to

high degree-of-freedom BMIs.
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