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Abstract— Neural decoding is an important approach for extracting

information from population codes. We previously proposed a novel

transductive neural decoding paradigm and applied it to reconstruct

the rat’s position during navigation based on unsorted rat hippocam-

pal ensemble spiking activity. Here, we investigate several important

technical issues of this new paradigm using one data set of one animal.

Several extensions of our decoding method are discussed.

I. INTRODUCTION

Neural decoding, as an inverse problem to neural encoding

analysis, aims to infer sensory stimuli or motor kinematics based

on recorded ensemble neuronal spiking activity. Neural decoding is

important not only for understanding neural codes (i.e., neural re-

sponse features capable of representing all information that neurons

carry about the stimuli of interest), but also for extracting maximal

information from population neurons in engineering applications,

such as brain-machine interfaces [13]. Traditional neural decoding

methods based on spiking activity [3], [21], [20], [12] rely on

spike sorting, a process that is computationally expensive, time-

consuming, and prone to errors [8], [18], [19]. To overcome this

drawback, we have proposed a novel transductive neural decoding

paradigm and applied it to unsorted rat hippocampal population

codes [10].1 Unlike traditional neural encoding/decoding methods,

the proposed paradigm does not require estimating tuning curves for

individual sorted single units. Our paradigm is also different from

other spike-sorting-free decoding methods in the literature [6], [17]

in that spike waveform features are used in decoding analysis.

In this paper, we first briefly review the transductive, spike

sorting-free decoding method [10], before discussing in greater

detail several technical issues related to application of the method

to neural data. Next, we discuss extensions to the proposed method.

From an information-theoretic perspective, we also propose a

practical way to assess the mutual information between sensory

stimuli and neural spiking responses, which are mathematically

characterized by a spatio-temporal Poisson process (STPP).

II. AN OVERVIEW OF TRANSDUCTIVE NEURAL DECODING

The basic idea of transductive neural decoding described in [10]

is to model ensemble neuronal spiking activity as a spatio-temporal

point process [15], in which the timing of spike events is defined

with a random measure in time, and the “mark” associated with the

spike events is defined with another random measure in real space.

A. Spatio-temporal Poisson Process (STPP)

Let us consider a STPP, which is the simplest spatio-temporal

point process in which events are independent in time. Let λ(t,a)
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denote the rate function, and a ∈ S (where S is a vector space). For

any subset Sj ∈ S in the space, the number of the events occurring

inside the region is also a temporal Poisson process with associate

rate function λSj (t):

λSj (t) =

Z

Sj

λ(t,a)da, and λS(t) =

Z

S

λ(t,a)da. (1)

The expected number of events in any spatio-temporal region is

also Poisson distributed with the mean rate given by

µ =
1

T

Z T

0

Z

S

λ(t,a)dadt =

Z T

0

λS(t)dt. (2)

In the special case where the generalized rate function is a

separable function of space and time such that

λ(t,a) = λS(t)p(a), (3)

where p(a) represents the spatial probability density function (pdf)

of the random variable a, and
R

S
p(a)da = 1. The interpretation

of the separable STPP is as follows: To generate random Poisson

events in space-time, the first step is to sample a Poisson process

with a rate function λS(t), and the second step, is to draw a random

vector a (associated with each event) from p(a). Therefore, the

spatio-temporal point process may be viewed as a purely temporal

marked point process, with spatial marks at each time point of

event occurrence from the ground process, and the marked space is

defined by a random probability measure [15]. Detailed technical

backgrounds are referred to [10].

B. Bayesian Decoding

In the context of neural decoding, let random variable a ≡
{a1, . . . ad} ∈ R

d denote the measured d-dimensional feature

extracted from the spike waveform (e.g., peak amplitude, waveform

derivative, principal components, or any features that are used in

spike sorting process), let x ∈ R
q denote the sensory stimulus

or motor covariate (such as the animal’s position, head direction,

velocity, etc.) that is being decoded. Furthermore, let n denote the

number of spike events in the complete d-dimensional space within

a time interval [t, t + ∆t), and let a1:n denote the associated n d-

dimensional spike waveform features. The d-dimensional feature

space is divided evenly into J non-overlapping regions S ≡ (S1 ∪
S2 · · · ∪ SJ), and a1:n ∈ S.

To infer the probability of the unknown variable of interest xt

at time t, we resort to the Bayes rule

P (xt|a1:n) =
P (a1:n|xt)P (xt)

P (a1:n)
(4)

where P (xt) denotes the prior probability, P (a1:n|xt) denotes the

likelihood, and the denominator denotes a normalizing constant.

Provided that a non-informative temporal prior for P (xt) is used

(for this reason, from now on we will drop the subscript t on

xt; the extension of using a temporal prior is discussed later),

then Bayesian decoding is aimed to maximize the product of the

likelihood and spatial prior P (x):

P (x|a1:n) ∝ P (a1:n|x)P (x) (5)
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To compute the likelihood, we assume that the spike events

follow a time-homogeneous STPP with a generalized rate function

λ(a,x). It follows that the number of events occurring within a

time window [t, t + ∆t) and subregion Sj in the d-dimensional

spike feature space also follows a Poisson distribution with the rate

function λ∆t,Sj (x) = ∆t
R

Sj
λ(a,x)da, which can be viewed as

a spatial tuning curve (TC) with respect to the covariate space x.

By dividing the spike feature space into J non-overlapping spatial

subregions S ≡ ∪J
j=1Sj , we can factorize the likelihood function

into a product of Poisson likelihoods of all J subregions

P (a1:n|x) =
J

Y

j=1

Poisson
“

n(Sj); λ∆t,Sj (x)
”

=

»

QJ

j=1

„

∆t
R

Sj
λ(a,x)da

«n(Sj)–»

e
−∆t

PJ
j=1

R

Sj
λ(a,x)da

–

QJ

j=1 n(Sj)!
(6)

where n(Sj) denotes the number of spike events within the region

Sj . In the limiting case when the subregion becomes sufficiently

small such that n(Sj) is equal to 0 or 1 within the time interval

∆t, simplifying (6) and replacing it into (5) yields the posterior

P (x|a1:n) ∝
n

Y

i=1

λ(ai,x)e−∆tλ(x)
P (x) (7)

where λ(x) denotes the rate of spike events occurring in the

covariate space x.

To compute (7), we need to compute or establish a representation

for the generalized rate function λ(a,x) and its marginal rate

function λ(x). In practice, these rate functions are estimated a

priori by recording spike events and their associated features while

sampling over the covariate space. Note that the generalized rate

function used in (6) can be written as

λ(a,x) =
#spikes(a,x)

occupancy(x)
=

N

T

p(a,x)

π(x)
= µ

p(a,x)

π(x)
(8)

where N denotes the total number of spike events recorded within

time interval (0, T ], µ is the mean spiking rate defined in (2), π(x)
denotes the occupancy probability of x during the complete time

interval, and p(a,x) denotes the joint pdf of a and x. Furthermore,

we have λ(x) = µ
p(x)
π(x)

, and λ(a,x) = λ(x) p(a,x)
p(x)

= λ(x)p(a|x),

where p(a|x) denotes the conditional pdf.

In the decoding phase, in order to compute the likelihood (6), we

would need to evaluate the target point in the functions λ(a,x) and

λ(x), or equivalently in p(a,x) and p(x). Finally, to choose the

maximum a posteriori (MAP) estimate of x, denoted by xMAP ,

we simply evaluate the log-posterior (7) among all candidates in

the x space, and choose the one that has the highest value.

C. Density Estimation: Parametric vs. Nonparametric Methods

In our decoding paradigm, the essential task is to estimate the

joint pdf p(a,x) and its marginal p(x). Multivariate density esti-

mation has been well studied in statistics [14]. Common methods

include (i) parametric approaches, which model the data by a finite

mixture model (a process similar to spike sorting at the first place);

and (ii) nonparametric approaches, such as the histogram or kernel

density estimation (KDE). Parametric representation is compact but

less flexible; nonparametric approaches are model-free but more

computationally expensive.

We investigate two methods here: one is based on an ℓ-mixtures

of Gaussians (MoG) model, another based on Gaussian KDE, using

a non-isotropic multivariate Gaussian kernel K

p(a,x) =

ℓ
X

r=1

πrK
`

mr;Hr

´

(9)

p(a,x) =
1

Mσ1 . . . σmh1 . . . hq

M
X

m=1

d
Y

i=1

K
“

ai − ãi,m

σi

”

×
q

Y

j=1

K
“

xj − x̃j,m

hj

”

(10)

where
Pℓ

r=1 πr = 1, (mr,Hr) denote the r-th mean vector and

diagonal (yet non-isotropic) covariance matrix, respectively, in the

mixture model for the augmented vector z = (a,x); {ãm, x̃m}
denotes the m-th source data point from the training set, and σi

and hj denote the kernel bandwidth (BW) parameters for the i-th

and j-th element in a and x, respectively.

For the MoG model, the unknown parameters {πr,mr,Hr}ℓ
r=1

are estimated from the expectation-maximization (EM) algorithm.

For the KDE, the BW parameters are estimated from [2].

III. MUTUAL INFORMATION BETWEEN STIMULUS AND

NEURAL RESPONSES

If we denote X as the sensory stimuli, and R as the raw neuronal

responses (spike waveform). Any feature extraction from raw data

(such as spike count, PCA) can be modeled as a generic nonlinear

function f . According to the Data Processing Inequality, post-

processing of R never increases the mutual information between

X and R [13]

I(X; f(R)) ≤ I(X; R) (11)

This inequality is also applicable to spike sorting. In comparison to

spike sorting-based decoding, spike sorting-free decoding sidesteps

the sorting (clustering) process and reduces information loss, and

prevents accumulating sorting error into decoding analysis.

The mutual information between the sensory input x and spike

waveform features a is written as [4]

I(x;a) = H(x) + H(a) − H(a,x) (12)

where the marginal and joint entropy functions can be estimated

from KDE. For instance, given the multivariate kernel density

estimator of an unknown pdf p(x), a simple plug-in resubstitution

estimator for differential entropy can be written as [1]: Ĥ(x) =
− 1

M

PM

m=1 log p̂M (xm), where p̂M (x) denotes a kernel density

estimator based on M data samples.

In the presence of multi-electrode recording, given the spike

waveform feature (a1, . . . , aℓ) from ℓ electrodes, the mutual in-

formation is given by [4]

I(x;a1, . . . , aℓ) = H(a1, . . . , aℓ) − H(a1, . . . , aℓ|x)

= H(a1, . . . , aℓ) −
ℓ

X

r=1

H(ar|x) (13)

= H(a1, . . . , aℓ) +

ℓ
X

r=1

h

H(x) − H(ar,x)
i

where the second step follows from the conditional independence

assumption between the covariate x and the neural response ar

from each electrode. The conditional entropy H(ar|x) = H(x) −
H(ar,x) can be estimated directly from KDE, and the joint entropy

H(a1, . . . , aℓ) may be estimated with a resampling method.
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Fig. 1. Left: Raw spike amplitudes from one tetrode (shown in 2 channels).
Right: Estimated mutual information (bits) between the position (x) and
spike amplitude (a) in each tetrode (computed from Eq. 12); note that they
are all bounded by the entropy of stimulus (3.36 bits).
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Fig. 2. Left: Numbers of spike counts per tetrode for sorted vs. all spikes.
Right: Decoding error cdf curves from using sorted and all spikes.

IV. APPLICATION: POSITION RECONSTRUCTION WITH

UNSORTED RAT HIPPOCAMPAL ENSEMBLE SPIKING ACTIVITY

A. Data

For experimental protocol and details, the reader is referred to

[10]. Animals were traveling in a 3.1-m linear track environment,

which was binned with 0.1-m bin size resulting in 31 position

bins. Simultaneous tetrode recordings were collected from the CA1

area of rat hippocampus. In each recording recording session, the

waveforms of all unsorted spikes were re-thresholded at 75 µV.

Next, for unsorted spike events, the spikes with a peak to trough

width of greater than 150 µs are considered as originating from

pyramidal cells and are included in the decoding analysis. For each

tetrode, the peak amplitudes from 4 channels are used to construct

a ∈ R
4 (see the left panel of Fig. 1 for illustration). In one selected

data set studied here, we collect 48 putative pyramidal cells from

18 tetrodes within about 30-min recordings. The first half of the

data is used as the training set. The temporal bin size is chosen as

∆t = 250 ms, and only run periods (velocity filter 0.15 m/s) are

chosen in encoding and decoding analyses. The decoding error is

defined as |xtrue − xMAP | (x ∈ R) for each temporal bin.

B. Results

1) Transductive Decoding with Sorted vs. All Spikes: For the

selected data set, we show the number of spikes per tetrode based

on sorted (10664) spikes or all recorded (39383) spikes (Fig. 2, left

panel). As seen, nearly 73% recorded spikes are discarded in spike

sorting. Potentially, many non-clusterable spikes contain tuning

information; and traditional spike sorting-based decoding methods

may suffer an information loss by discarding those spikes. The

decoding error cumulative distribution function (cdf) curve (Fig.

2, right panel) indicates a statistically significant improvement in

decoding accuracy (two-sample KS test: P < 0.001). The median

(mean) statistics of decoding error are 0.1111 (0.1920) m for using

all spikes, and 0.1172 (0.2051) m for using only sorted spikes. This

result also confirms our previous finding [10].

2) Parametric vs. Nonparametric Density Estimation: Next, we

compare two density estimators (Eqs. 9 and 10) in our pro-

posed transductive neural decoding paradigm. For the nonparmetric

method, we use Gaussian KDE with non-isotropic BW parameters.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

 Error (m)

E
rr

o
r 

cd
f

 

 

KDE

MoG−4

MoG−6

MoG−8

MoG−10

MoG−12

MoG−16

0 0.5 1 1.5 2 2.5 3
0.7

0.75

0.8

0.85

0.9

0.95

1

 Error (m)

E
rr

o
r 

cd
f

 

 

BW scaling 1

BW scaling 1.41

BW scaling 1.73

BW scaling 2

BW scaling 2.5

BW scaling 3

Fig. 3. Decoding error cdf curves from both mixtures of Gaussians (MoG)
and KDE methods (left), and from using various BW scalings (right).

TABLE I

STATISTICS OF THE MEAN/MEDIAN DECODING ERROR (UNIT: METER)

USING VARIOUS THRESHOLDS OR VARIOUS COMPRESSED SAMPLE SIZE

M FOR OUR TRANSDUCTIVE AMPLITUDE-BASED DECODING.

threshold (µV) sorted spikes all spikes

100 0.2056/0.1159 0.1928/0.1009
125 0.2174/0.1176 0.2057/0.1116
150 0.2347/0.1197 0.2132/0.1154

M (per tetrode) sorted spikes all spikes

500 0.4536/0.1876 N/A
1000 0.3283/0.1307 N/A
2000 0.2444/0.1194 0.5642/0.1598
3000 0.2051/0.1172 0.3960/0.1279

ALL data 0.2051/0.1172 0.1920/0.1111

For the parametric method, we use various numbers (4, 6, 8, 10,

12) of MoG for each tetrode, resulting in a maximum of 216

multivariate Gaussians for 18 tetrodes. Note that using a Gaussian

mixture for density estimation is in spirit similar to the clustering

process during spike sorting, except that we estimate (a,x) jointly

(instead of a alone in spike sorting), and that the spread of

the kernels is allowed to be overlapping (without making hard

decisions). The decoding results are shown in Fig. 3 (left panel).

As seen, the decoding accuracy also improves as the number of

the Gaussian mixtures increases. The nonparametric method has a

better decoding performance due to its more accurate representation

of the density. Besides, for the decoding purpose, a local density

representation is more preferable to a global characterization.

3) Reduction of Source Samples: In KDE representation, the

density is represented by M source data points (at one electrode).

Obviously, the storage requirement and computational complex-

ity of decoding is linearly proportional to M . To reduce the

computational burden, we attempt to reduce the source samples

by two methods. The first method uses a higher threshold (in

our case, greater than 75 µV) to exclude low-amplitude spike

events. Generally, the low-amplitude spikes have less recoverable

information of the stimulus. The second method aims to com-

press source samples using some computational methods [11],

[7], [9]. Here we use a computationally efficient KD-tree method

(http://www.ics.uci.edu/∼ihler/code/kde.html).

The results of the decoding error statistics are summarized in

Table I. As seen from the mean/median error statistics, the decoding

accuracy degrades while using a very high threshold; however,

better performance can also be expected using a slightly higher

threshold (e.g., 100 µV). On the other hand, reducing source sample

size using a computational method always degrades decoding

accuracy, regardless of the data source (sorted spikes or all spikes).

4) Scaling the BW Parameters: In the presence of noisy spikes

(in the low-amplitude space), it is common to use a larger kernel

BW to smooth the noise-contaminated samples. To test this idea,

we fix the position BW (0.05 m) and scale the initial amplitude BW
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(estimated from [2]) by different scalars (
√

2,
√

3, 2, 2.5, 3) in all

four dimensions. The decoding error cdf curves are shown in Fig.

3 (right panel). For this data set, the optimal scaling parameter is

2, achieving the median (mean) decoding error of 0.1043 (0.1346)

m. Note that the mean decoding error is greatly reduced.

V. EXTENSIONS AND DISCUSSION

A. Curse of Dimensionality

In a general setting, the dimensionality of the covariate space

can be very large: either q is large, or the range for individual

univariate dimension is large (with a relatively small bin size). For

MAP estimation, a naive even binning of the covariate space can

be extremely inefficient, since the occupancy density π(x) may be

very sparse. To tackle the “curse of dimensionality” problem, we

may use a divide-and-conquer approach by constructing q indepen-

dent decoders, each one equipped with its own density estimator.

Another way is to use informative cues to draw candidate samples

from an informative covariate space (an idea similar to importance

sampling) [5]. Here we discuss two sampling approaches.

1) Sampling from a Temporal Prior: Within the state-space

framework, we can sample the current covariate x from a transition

prior of the covariate at the previous discrete time step [3], [21]:

P (xt) =

Z

p(xt,xt−1)dxt−1 =

Z

p(xt|xt−1)p(xt−1)dxt−1 (14)

where p(xt|xt−1) denotes a transition probability density. The

posterior can be estimated used a recursive Bayesian filtering rule

(for notation simplicity, we have ignored the subscript 1:n for a)

P (xt|a1:t) =
P (xt,a1:t)

P (a1:t)
=

P (xt,a1:t|a1:t−1)P (a1:t−1)

P (at|a1:t−1)P (a1:t−1)

=
P (xt|a1:t−1)P (at|xt,a1:t−1)

P (at|a1:t−1)
(15)

where P (at|xt,a1:t−1) = P (at|xt) (because of the statistical

independence between at and a1:t−1 in the spike waveform feature

space) denotes the data likelihood at the t-th time step.

2) Kernel Regression: Since at every time step t, we observe the

current spike waveform feature at; ideally, the candidate sample is

drawn from the mode of the posterior P (x|at). However, searching

for the mode in a high-dimensional covariate space is a very

challenging problem. Instead, we can search for the mean in the

sample space, which may be computed by a continuous multi-input

multi-ouput mapping through nonparametric regression x = g(a),

where g(·) is a locally smooth multivariate function

g(a) = E
x|a[x] =

Z

xP (x|a)dx =

PM

m=1 x̃mK
“

a−ãm

σ

”

PM

m=1 K
“

a−ãm

σ

” (16)

Eq. (16) is known as Nadaraya-Watson kernel regression. However,

in the presence of noisy spikes and multi-modes in P (x|a),

this scheme might not be effective. Alternatively, we may draw

candidate samples from P (a|x) using an auxiliary variable [5].

B. Other Issues

Several remaining issues are worth mentioning. First, region-

dependent kernel BW parameters can be considered in KDE. For

instance, in the low spike-amplitude space, we may use a small BW

for the dense noisy spikes, while a large BW is preferred in the

median-to-high amplitude space. In addition, finding a meaningful

representation of the feature (e.g., by nonlinear transformation) and

selecting an appropriate kernel function (in either parametric or

nonparametric density estimation) would help separate different

feature clusters and improve the decoding accuracy. Second, we

have assumed that each sample point contributes equally in KDE.

Alternatively, samples can be merged (according to certain similar-

ity measure) and assigned with unequal weights [22], which also

helps reduce the sample size.

All of above-mentioned topics will be the subject of our future

decoding analysis investigation, using recordings not only from the

rat hippocampus, but also from other brain regions (e.g., primate

primary motor cortex). In addition, real-time implementations of our

transductive neural decoding paradigm using online (parametric or

nonparametric) density estimation is currently under investigation.
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