
  

Abstract—Most published GWAS do not examine SNP 

interactions due to the high computational complexity of 

computing p-values for the interaction terms. Our aim is to 

utilize supercomputing resources to apply complex statistical 

techniques to the world’s accumulating GWAS, epidemiology, 

survival and pathology data to uncover more information 

about genetic and environmental risk, biology and aetiology. 

We performed the Bayesian Posterior Probability test on a 

pseudo data set with 500,000 single nucleotide polymorphism 

and 100 samples as proof of principle. We carried out strong 

scaling simulations on 2 to 4,096 processing cores with factor 2 

increments in partition size. On two processing cores, the run 

time is 317h, i.e. almost two weeks, compared to less than 10 

minutes on 4,096 processing cores. The speedup factor is 2,020 

that is very close to the theoretical value of 2,048. This work 

demonstrates the feasibility of performing exhaustive higher 

order analysis of GWAS studies using independence testing for 

contingency tables. We are now in a position to employ 

supercomputers with hundreds of thousands of threads for 

higher order analysis of GWAS data using complex statistics. 

I. INTRODUCTION 

ENOME Wide Association Studies (GWAS) are 

performed to identify genetic markers, i.e. single 

nucleotide polymorphisms (SNPs), for the analysis of 

biological traits and disease. These studies have been made 

possible by sequencing the human genome [1] and the 

completion of the subsequent human haplotype mapping 

project HapMap [2]. Since 2005 alone, over 2,700 GWAS 

have been conducted. With an average cost of $500,000 per 
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study this amounts to $1.35 billion having been spend on 

generating data. Given the high costs involved in running a 

GWAS, there is clearly a great need to ensure that the 

information in the collected data is fully utilized. While 

GWAS have produced major advancements in the 

understanding of genetic basis of disease, the generated data 

is not extensively explored. For example, gene-gene and 

gene-environment interaction as well as complex networks 

of gene regulation replace the notion that a single gene is 

causative of a phenotypic trait or disease. Table 1 shows 

time estimates to perform 2-way and 3-way interaction 

studies using two standard analysis methodologies. The 

computation of 2-way interactions takes days if not years. 

The computation of 3-way interactions on standard sample 

sizes is estimated to take thousands if not millions of years 

[3]. This clearly demonstrates that higher order interaction 

studies cannot be carried out using commodity-computing 

resources but require clusters [4] or supercomputers [3].  

TABLE I.  RUN TIME ESTIMATES FOR SNP INTERACTION ANALYSIS 

ON SINGLE 3GHZ CPU 

# SNP 

(interaction) 
IG method

a
 [5] BOOST

b
 [6] 

500,000  
(2 way) 

300 days 3.5 days 

1,000,000 
(2 way) 

3.3 years 13.9 days 

500,000 

(3 way) 
137,000 years 1,500 years 

1,000,000 
(3way) 

1,095,000 years 12,600 years 

a. IG – information gain 

b. BOOST – Boolean operation based screening and testing 

Most published GWAS do not examine SNP interactions 

due to: (a) the high computational complexity [3] of 

computing p-values for the interaction terms, and (b) the 

typically low power to detect significant interactions.  

Thus, it is currently intractable to carry out any but 

simplistic analyses on these large data sets due to lack of 

computer power and memory and therefore the full utility of 

the resources and technology has not been realized. 

We have been implementing and testing new methods and 

approaches in the field of genomics to make feasible the 

analysis of GWAS data using more complex models 

including machine learning approaches and systems biology.   

Our aim is to utilize supercomputing resources to apply 

complex statistical techniques to the world’s accumulating 

GWAS, epidemiology, survival and pathology data related 
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Fig. 2 Performance results: maximum run times (left) and scaling (right) between partition N = 2 and N = 4,096 processing cores 

TABLE II.  RUN TIME [S], SCALING FACTOR AND PARALLEL EFFICIENCY FOR BAYESIAN POSTERIOR PROBABILITY (BPP) TEST
a 

# CPUs 
Data 

decomposition 

Compute 

contingency 

table 

BPP test Run time 
Run time per 

test 

Scaling 

factor 

Overall 

scaling 

Parallel 

efficiency 

[%] 

2 1.0 x 10-6 4.2171 1141280.23 1141286.13 2.2826 N/A N/A N/A 

4 2.0 x 10-6 2.1348 570839.25 570843.08 1.1417 1.9993 2.00 99.96 

8 2.0 x 10-6 1.0688 285445.33 285448.11 0.5709 1.9998 4.00 99.96 

16 2.0 x 10-6 0.5334 142714.21 142716.47 0.2854 2.0001 8.00 99.96 

32 2.0 x 10-6 0.2670 71358.13 71360.12 0.1427 1.9999 15.99 99.96 

64 2.0 x 10-6 0.1336 35682.45 35684.30 0.0714 1.9998 31.98 99.95 

128 2.0 x 10-6 0.0668 17845.32 17847.11 0.0357 1.9994 63.95 99.92 

256 2.0 x 10-6 0.0334 8924.38 8926.13 0.0178 1.9994 127.86 99.89 

512 2.0 x 10-6 0.0168 4462.36 4464.10 0.0089 1.9995 255.66 99.87 

1,024 5.520 x 10-4 0.0076 2234.82 2236.55 0.0045 1.9960 510.29 99.67 

2,048 6.250 x 10-4 0.0037 1120.43 1122.15 0.0022 1.9931 1017.05 99.32 

4,096 3.010 x 10-3 0.0019 563.14 564.86 0.0011 1.9866 2020.47 98.66 

a. 500,000 SNPs and 100 samples 

The idea is simple with the following approach: 

• Determine how many contingency tables need to be 
computed 

• Divide the number by the number of processing cores 
available – the absolute number determines the number 
of tests each processor has to perform 

• Split the list of contingency tables accordingly and 
distribute to each processor. 

This strategy will lead to some processing cores without 
computation, i.e. they will be idle. However, if one was to 
apply a more sophisticated method, then all processors might 
do work but the difference between how many tests each 
processor performs is one test. Since the overall run time 
depends on the processor that takes longest to perform its 
task, our simpler method will run as fast as other 
sophisticated methods. 

In this study we distribute the GWAS data set to all compute 
tasks, calculate the contingency tables for all tests and 
perform the Bayesian Posterior Probability test on a 2 " 4 
contingency table, i.e. for single SNP testing, where a SNP 
can have values 0, 1, 2 and 3. Data decomposition and 
communication was implemented using the Message Passing 
Interface (MPI) and C/C++. 

E. Strong scaling experiments 

We perform strong scaling experiments to investigate the 

performance of the proposed strategy for a framework to 

carry out complex statistical analysis of GWAS. We define 

an artificial GWAS data set with 500,000 SNPs of 100 

samples. This leads to 500,000 tests to be performed. We set 

the SNPs to all 1’s as well as the phenotypic trait is 1. While 

this test does not contain any information, it allows us to test 

performance.  

1260



  

We performed the test on 2 to 4,096 processing cores on 

BG/P with processor numbers incrementing by 2. The 

problem size was kept constant. We estimated this 

simulation would take over four weeks on a single 

processing core. Computing resource constraints make 

unfeasible for us to perform the simulation on a single 

processing core. Thus, the overall speedup was defined with 

respect to the run time on 2 processing cores. 

All simulations were carried out in virtual node mode, i.e. 

each core was associated with one single threaded MPI task. 

III. RESULTS 

Table 1 shows the results for timing and strong scaling. 

The run times decrease linearly with the number of cores for 

all compute partitions (Fig. 2). On two processing cores, the 

run time is 317h, i.e. almost two weeks. On 4,096 processing 

cores, the run time is reduced to less than 10 minutes. The 

corresponding speedup factor is 2,020. This is very close to 

the theoretical speedup factor of 2,048. Indeed, the scaling is 

just below 2 between for N vs. 2N processing cores. Only at 

N = 2,048 and N = 4,096 we see that the scaling is getting 

slightly smaller with 1.9931 and 1.9866, respectively. The 

parallel efficiency also shows near perfect load balancing 

and scaling. It is 99.96% for the smaller partitions N = 2, 4, 

8, 16, 32 and goes down to 98.66% on N = 4,096. 

The run time is determined by the BPP test with the 

building of the contingency table only taking up a very small 

fraction of time. It is also worth noting that the run time per 

BBP test is decreasing linearly with the number of 

processors used. 

IV. DISCUSSION 

A. Scaling simulations 

The simulations scale as expected. Since each test is an 

independent test on a single contingency table and because 

each contingency table is small in memory, the simulations 

are pleasantly parallel. A speedup of 2 weeks on two 

processing cores down to fewer than ten minutes on 4,096 

processing cores demonstrates that exhaustive analysis of 

GWAS data becomes feasible.  

Further, the high parallel efficiency on even the largest 

number of processing cores used shows that massively 

parallel, distributed memory supercomputers are suitable to 

perform the task of computing independence in contingency 

tables for a large set of tests. 

B. Limitations and future work 

There are a few limitations to the current state of this 

work. The pseudo data set that we generated is not 

representative of real GWAS studies. We note that the 

computation of the Monte Carlo Sum differs given a random 

distribution of 0’s and 1’s in the SNP data. However, our 

results show the worst-case scenario since the maximum 

number of iterations has been used for computing the Monte 

Carlo sum. We also show the statistic for univariate analysis 

only. Therefore the number of tests performed is 500,000. 

For two way interaction, the number of tests increases to 

N(N – 1)/2 with N being the number of SNPs. However, 

since the calculation of a test is deterministic, we can 

estimate accurately the run times for these higher order 

interaction studies. Roughly 125 billion tests would have to 

be performed for a two-way interaction analysis of a GWAS 

data set that measured 500,000 SNPs per sample. This is 

~250,000 times the number of tests performed in the 

presented study which would be over 41 thousand hours. 

This leads to the observation that future work must include 

speeding up of the test statistic. By choosing other test 

statistics than the BPP would enable carrying out more tests 

per second per processing core. An ad hoc implementation 

of the !2 test [4] showed an increase of four orders of 

magnitude of the number of tests that can be performed on a 

single processing core per second. Assuming scalability as 

shown in our results, this would make the analysis possible 

in 4.1 hours. Extrapolating our parallel performance to the 

full 4 rack Blue Gene/Q system at VLSCI with 262,144 

hardware threads assuming the same performance on the full 

system, the run time would be reduced to under 0.06 

seconds. Compared to previously estimated 1.2 years [3] in 

2008 and less than 9 hours [4] in 2011 this would be a 

speedup of over 630 billion and 500,000, respectively. 

Considering that future analysis will be performed on 

imputed GWAS data with millions of SNPs, such a speedup 

and further optimization is required for exhaustive analysis 

of many way SNP interaction studies. 

V. CONCLUSION 

This work demonstrates the feasibility of performing 

exhaustive higher order analysis of GWAS studies using 

independence testing for contingency tables. The problem is 

pleasantly parallel that allows the use of massively parallel, 

distributed memory supercomputers. We are now in a 

position to employ supercomputers with hundreds of 

thousands of threads for higher order analysis of GWAS data 

using complex statistics. 
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