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Abstract— In this paper we propose a generic approach to the
multiview clustering problem that can be applied to any number
of data views and with different topologies, either continuous,
discrete, graphs, or other. The proposed method is an extension
of the well-established spectral clustering algorithm to integrate
the information from several data views in the partition solu-
tion. The algorithm, therefore, resolves a joint cluster structure
which could be present in all views, which enables researchers
to better resolve data structures in data fusion problems The
application of this novel clustering approach covers an extended
number of machine learning unsupervised clustering problems
including biomedical analysis or machine vision.

I. INTRODUCTION

A general trend in most research areas is to integrate
information from several data sources (referred to as data
views throughout this paper) in order to attain a richer and
deeper insight of the subject under study. Technical advances
in instrumentation, information management and processing
make this possible. For example, a clinical study on a set
of pacients may include sources of information as diverse
as biochemical analysis, written tests, image scans or data
gathered by mobile devices among many other sources of
information.

However many computational tools are constrained to use
only a single source of information, which either limits its
range of applications or enforces researchers to combine their
data using custom functions that are not always possible or
desirable. This is certainly the case with clustering algo-
rithms, that are generally designed to operate with a single
data view.

Although it is possible to combine several data views into
a single space, this may not always serve the desired goal.
By simply stacking several variables (i.e. dimensions) of the
data it is not generally possible to obtain a clustering that
is compatible with all views individually. Such operation
would yield the most restrictive clustering: two observations
would only be assigned to the same cluster if they are
close to each other in all data views. On the contrary, an
inclusive clustering assigns a pair of observations to the
same cluster if they are close to each other in any data
view. Obtaining an inclusive clustering thus requires to use
a custom distance function or an equivalent method to alter
the default behaviour of clustering algorithms with stacked
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data dimensions, which makes them inconvenient for this
purpose.

There already exist several techniques that are somehow
similar to the concept of inclusive clustering explained
above. Consensus clustering [1] methods receive a set of
clustering assignments, either from different data views, from
different clustering algorithms or from different executions
of the same clustering algorithm (many clustering algorithms
such as k-means have a random step and thus may yield dif-
ferent clustering solutions on the same input data). Consen-
sus clustering is therefore defined as the problem of finding
the most compatible clustering assignment with respect to
the input clusterings. While some consensus algorithms are
restrictive, i.e. they penalize merging two observations that
are far apart in some views, others do not.

Clustering of data with multiple views, or simply multi-
view clustering, is related to consensus clustering but essen-
tially different. Multiview clustering methods simultaneously
use several data views to determine the best clustering
assignments that are compatible with all or most of the views
of the data. According to [2], multiview clustering algorithms
attain better results than consensus clustering as the former
integrate all the available information. Therefore such algo-
rithms are able to extract finer relationships between the data
elements.

In this paper we propose a generic approach to the multi-
view clustering problem that can be applied to any number
of data views, with different topologies (continuous, discrete,
graphs, and so on). It is based in well proven techniques that
exhibit good performance plus other useful features. This
paper is organized as follows. In section II, the methods and
techniques on which our method is based are described. Then
in section III a set of synthetic examples is proposed and the
results of applying our method are presented. Finally section
IV contains the conclusions of the work described in this
paper.

II. METHODS

Spectral clustering [3] is one of the most powerful clus-
tering algorithms. It is based on the spectral graph theory
[4], which studies the properties of graphs with respect to
their eigenvalues and eigenvectors. Given a set of points
or observations x1, x2, ..., xN , a similarity graph is a graph
G = (V,E) where each vertex vi ∈ V represents a point xi
and the similarity between two points sij ∈ E is represented
by the edge that links them.

The goal of spectral clustering is to divide the graph into
several vertex (i.e. sample) groups so that the samples in each
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Fig. 1: Data views (first column), clusters computed independently for each view by Spectral Clustering (second column)
and clusters computed jointly for all views by Multiview Spectral Clustering (third column). Example 1.

group or cluster have maximum similarity between them and
minimum similarity with the samples in other clusters.

Although a comprehensive explanation of spectral cluster-
ing is beyond the scope of this paper, an overall description
will be given for completeness. The input to the algorithm
is a set P of n samples. First, a similarity graph G of P
is obtained using a similarity metric (euclidean or Gaussian
for example). Then the laplacian matrix L of the graph G is
computed. Finally the eigenvalues EV and eigenvectors ET
of L are obtained. According to the spectral graph theory,
the number of eigenvalues in EV whose value is zero indi-
cates the number of disconnected subgraphs in G, in other
words the number of clusters in the dataset. The clustering
assignments can be obtained by any ordinary clustering algo-
rithm (k-means for example) using the eigenvector columns
whose eigenvalue is zero. The theory includes a relaxation
variant to cover graph partitions which do not need to be
fully disconnected, which are captured through almost-zero
eigenvalues. Spectral clustering outperforms other clustering
algorithms when dealing with non-gaussian or, in general,
non-convex clusters. While most clustering algorithms find
density-based clusters (i.e. points grouped in a similar density
area), spectral clustering finds connectivity-based clusters,
i.e. groups of points that are connected to each other even if
they spread across a wide area that would not be recognizable

by density-based methods. This makes it a valuable algorithm
for many clustering problems that cannot be solved by other
clustering algorithms.

A. Multiview Spectral Clustering

This paper proposes an extension of the spectral clustering
to a K-views problem through a joint eigendecomposition of
K Laplacians Lk, k = 1, 2, · · · ,K, where Lk corresponds to
the Laplacian constructed in the kth view.

The proposed algorithm is referred to as Multiview Spec-
tral Clustering, and takes as an input data points from K
data views x1,k, x2,k, . . . , xi,k, . . . , xN,k, where first index
i = 1, 2, . . . , N denotes the sample number and the second
index k = 1, 2, . . . ,K corresponds to one of the data views.
The dimensionality and type of data (continuous, binary,
graphs, etc) can differ for each data view as long as each view
contains the same number of samples. K laplacian matrices
Lk are computed independently per data view following
one of the established strategies for spectral clustering [3].
For example, it is possible to select a similarity function as
the Gaussian similarity function s(xi,k, xj,k) = exp(|xi,k −
xj,k|2/(2σ2)) with an adjusted value of σ.

Eigendecomposition of the laplacian matrices from several
data views is based on the common principal component
analysis proposed by Flury in 1984 [5]. This statistical
method, also known as joint diagonalization, attempts to
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diagonalize a set of positive-definite symmetric matrices
simultaneously. The hypothesis of common components Hc

states that exists an orthogonal matrix V such that the given
matrices of K groups have the diagonal form, as formulated
in Equation 1.

Hc : L
′
k = V T Lk V, k = 1, 2, ...,K (1)

where Lk is positive-definite symmetric matrix of group
k, and L′

k is its diagonalized form obtained by the linear
transformation defined in matrix V . Note that the eigen-
vectors ET (columns of the matrix V ) are common for all
the groups, while the eigenvalues EV are group-specific. In
practice, the hypothesis Hc is hardly feasible, and the matri-
ces are attempted to be as diagonal as possible. We employ
a new algorithm recently published by Trendafilov [6] to
find an approximate solution.A the joint diagonalization of
the laplacian matrices is therefore computed by performing
common principal component analysis from the Equation 1.
The resulting eigenvectors ET with near-zero value represent
the vectors relevant to the graph partition. The final clustering
assignment on the selected eigenvectors is performed by the
k-means clustering algorithm. The method of joint diagonal-
ization has already shown a good performance in processing
of biomedical signals (ECG, EEG, multi-electrode neural
recordings) [7] and gas sensor array data [8].

III. RESULTS

This sections reports some preliminary results of the
multiview clustering algorithm applied to three synthetic
examples of data points in two dimensions. Note that the
strategy of barely stacking variables fails to detect proper
clusters meaningful for all data views, and these results are
omitted in the section.

The first example is composed of data points from three
classes, separable in the first view and mixed in the second
view (Figure 1, first column). The standard spectral cluster-
ing algorithm yields an independent clustering assignment
for each data view, thus suggesting three clusters for the
first view and two for the second one (Figure 1, second
column). On the contrary, the multiview approach integrates
the information from both views, thus assigning all data
points to two clusters only (Figure 1, third column), that
are compatible with both data views.

The second example deals with non-Gaussian data of
four classes (Figure 2). It is intended to demonstrate the
ability of the spectral clustering algorithm to discover non-
Gaussian clusters, including convex data clusters. The multi-
view clustering successfully discovers the three clusters that
are compatible with both data views (Figure 3).

Finally, an example of application to data with more than
two views is presented. While existing multiview clustering
algorithms are usually limited to data with two views, like
[2], our approach can be applied to any number of data
views. In this case a three-view data set is used (Figure 4),
where the first view apparently has four clusters, while in
the other two views either the upper or the lower clouds of
points are merged. The resulting clustering algorithm yields

Fig. 2: Data views with four clusters in each. Example 2.

Fig. 3: Three clusters from Multiview Spectral Clustering.
Example 2.

1256



Fig. 4: Three Data views with different groupping of data points per view. Example 3.

Fig. 5: Two clusters found by Multiview Spectral Clustering, which are common to all Data views. Example 3.

an assignment compatible with all three views, with the upper
clouds of points assigned to a single cluster and the lower
clouds assigned to another cluster (Figure 5).

IV. CONCLUSIONS
The proposed method can be viewed as a novel generic

approach to the multiview clustering problem. As compared
to previous proposals, our algorithm is designed to accept any
number of data views. We show some results on synthetic
examples with two and three views. Indeed, it can be seen as
a natural extension of spectral clustering, which is a powerful
and proven technique for difficult clustering problems, to the
multiple data view scenario, that is increasingly important
as more data sources are available to researchers. Another
important advantage of this algorithm, inherited from the
standard spectral clustering algorithm, is that it gives a
suggestion on the number of clusters based on a statistical
estimator. Finally, the proposed clustering algorithms can be
naturally applied to a variety of problems from different
areas, as it does not require to define ad-hoc solutions or
to create custom distance functions.
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