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Abstract— Modern healthcare is rapidly evolving towards a 

personalized, predictive, preventive and participatory approach 

of treatment to achieve better quality of life (QoL) in patients. 

Identification of personalized blood glucose (BG) prediction 

models incorporating the lifestyle interventions can help in 

devising optimal patient specific exercise, food, and insulin 

prescriptions, which in turn can prevent the risk of frequent 

hypoglycemic episodes  and other diabetes complications. 

Hence, we propose a modeling methodology based on multi-

input single-output time series models, to develop personalized 

BG models for 12 type 1 diabetic (T1D) children, using the 

clinical data from Diabetes Research in Children’s Network. 

The multiple inputs needed to develop the proposed models 

were rate of perceived exertion (RPE) values (which quantify 

the exercise intensity), carbohydrate absorption dynamics, basal 

insulin infusion and bolus insulin absorption kinetics. Linear 

model classes like Box-Jenkins (1 patient), state space (1 

patient) and process transfer function models (7 patients) of 

different orders were found to be the most suitable as the 

personalized models for 9 patients, whereas nonlinear 

Hammerstein-Wiener models of different orders were found to 

be the personalized models for 3 patients. Hence, inter-patient 

variability was captured by these models as each patient follows 

a different personalized model.  

I. INTRODUCTION 

The medical profession is increasingly discarding a “one 

size fits all” approach to medical treatment and rapidly 

embracing a personalized approach to medical treatment and 

care. This change has been brought about not only due to 

improvements in measurement technology but also because 

of an improved understanding of diseases that has been 

catalyzed by the application of mathematical modeling 

techniques. In the development of blood glucose (BG) 

models for diabetic subjects, intra- and inter-patient 

variability in glucose metabolism necessitates the need for 

personalization. On the other hand, optimal lifestyle 

interventions in diabetes care itself can serve as a therapy to 

prevent the occurrence of several short and long term 

complications. Particularly, optimal exercise interventions in 

type 1 diabetes (T1D) children are important to prevent 

hypoglycemic risks during or immediately following the 

exercise. A personalized model including the effects of 

lifestyle interventions can aid in optimal prescription of 

exercise, insulin and meal in diabetes care. 
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Mechanistic and empirical BG models have been 

developed since early 1960s [1]. Most of the mechanistic 

models predict BG variations for meal and insulin inputs. A 

review on these mechanistic models can be found in [2, 3].  

There are also a few models which incorporate exercise 

effects [4, 5].  Data based modeling techniques like artificial 

neural networks (ANN) and time series models have also 

been used to forecast the BG variations using various inputs 

like meal, insulin, activity, skin impedance, heart rate etc. A 

brief overview on such data based models can be seen in [2]. 

Most of the available exercise related models on T1D 

quantify the exercise intensity or activity related variables 

using the percentage of oxygen consumption (VO2max) as a 

means to quantify the exercise intensity [4, 5] or using 

various other measurements from sensors like sense wear as 

in [6]. Exercise intensity can also be quantified by using rate 

of perceived exertion (RPE) values, which can easily be 

obtained via simple speech or pictorial tests without 

depending on any special sensors or devices. The validity of 

revised scaled RPE values (varying between 0 and 10) in 

children was studied and confirmed in  [7].  

Hybrid model structure involving compartmental models 

for meal and insulin prediction and ANN models for 

glucose-insulin metabolism prediction was investigated in 

[8]. Recently, a similar hybrid model structure has been used 

to develop personalized models for the virtual patients of 

UVa simulator [9]. However, these studies have not 

incorporated any exercise effects into the personalized 

models, and these models have been developed using the 

virtual data only.  
Hence, in this paper, we propose a methodology that 

involves personalized time series BG models with inputs 

related to exercise (quantified by 0 to 10 revised scale RPE 

values), meal and insulin (basal and bolus). Clinical data of 

T1D children from [10] were utilized for developing 

personalized BG models.  
 

II. NATURE OF DATASET AND MODELING METHODOLOGY 

A. Nature of T1D Children Dataset 

In this work, we used clinical data obtained from one of 
the Diabetes Research in Children’s Network (DIRECNET) 
exercise studies. There are totally 55 T1D children in this 
cohort, out of which the clinical data of 12 randomly-chosen 
patients were presented in this work. The dataset includes the 
clinical data of two outpatient visits lasting about 7 hr with a 
75 min exercise in the late afternoon. In one of the visits, the 
basal insulin supply was stopped during the exercise period 
whereas it was continued during the other visit. In this 
DIRECNET study [10], the patients visited the hospital prior 
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to lunch and left after dinner. Pre-lunch bolus  of rapid acting 
insulin analogue was administered to each patient based on 
the usual insulin-carbohydrate (CHO) ratio and correction 
factor calculations performed at home. The late afternoon 
exercise was performed on a treadmill in 4 phases (P1, P2, 
P3, and P4) at a target heart rate of 140 bpm. Each phase 
consisted of 15 min exercise followed by 5 min resting 
period. The intensity of exercise during each phase was 
quantified based on 0 to 10 revised scale RPE values. A 
statistical summary of the clinical data used in this work can 
be found in Table I. Also, the mean ± standard deviation 
(SD) plots of CGMS BG readings (sampling interval = 5 
min)  during the two outpatient visits can be seen in Fig. 1.  

B. Modeling Methodology 

  The system comprises of 4 input variables related to 
exercise (RPE), meal (CHO), and insulin (basal and bolus 
doses) and a single output (CGMS BG readings). A hybrid 
multi-input single-output (MISO) model structure (illustrated 
in Fig. 2), which involves time series models predicting BG 
dynamics and mechanistic models characterizing the input 
dynamics (like meal absorption dynamics and subcutaneous 
(S.C.) insulin kinetics) is proposed in this work. The type 
and order of the BG time series models was not the same for 
all patients due to the inter-patient variability in glucose-
insulin metabolism. Hence, they are called as personalized 
BG models. On the other hand, the type of the mechanistic 
models used in characterizing the input dynamics was not 
varied for different patients. Hence, they are termed as 
generalized models. The clinical data related to the inputs 
were pre-treated and converted into time series data before 
being used as inputs for the purpose of personalized model 
identification.  

1) Pretreatment of RPE values: 

  The clinical dataset contains 0-10 revised scale RPE 

values measured at 10
th

 min of each exercise phase. The RPE 

values at the 5
th

 and 15
th

 min of each exercise phase are 

missing in the current dataset. Hence, in order to predict the 

missing values, a regression model was developed with the 

available data. Regression was performed with RPE values 

as output (Y) and gender (X1), height (X2), weight (X3), 

exercise phase (X4), basal insulin status during exercise (X5), 

treadmill speed (X6) and inclination (X7) as input variables. 

Interaction between treadmill speed and inclination (X8 = 

X6*X7) was also considered as one of the input variables. 

The data of each exercise phase was considered as a sample. 

Different combinations of testing and training datasets were 

used for developing the regression model. The final 

regression model used in the prediction of missing RPE 

values is summarized in Table II.  Variables X1, X3, X6, and 

X8 were found to be statistically significant. The negative 

coefficient value for X6 indicates that increase in speed alone 

will not increase the RPE, whereas the positive coefficient 

for the interaction variable X8 indicates that simultaneous 

increase/decrease of both speed and inclination leads to 

increase/decrease in RPE.  The results of regression model 

are not discussed in detail here due to scope of the article. 

The missing RPE values were predicted by using the 

available treadmill speed and inclination data into the model. 
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Fig. 1 Mean ± SD values of CGMS BG readings of 12 patients 

2) Pretreatment of meal data: 

 Meal data includes the lunch and snacks given till dinner. 

The amount of CHO given for every snack is available in the 

clinical dataset. In case of lunch, the amount of CHO was 

calculated using the insulin–CHO ratio and the usual pre-

lunch bolus dose. Hence, the meal data includes the time and 

amount of CHO in each intake. In order to convert this data 

into dynamic (thereby making it suitable for time series 

analysis), the meal absorption model from Hovorka et al. 

was used [11]. The mathematical representation of this meal 

absorption dynamics model (UG) can be found in equation 

(4) of  [11]. 

3) Pretreatment of insulin data:  

Insulin data involves the basal and bolus insulin doses. The 

basal insulin dose (UB) was computed by calculating the total 

daily dose (TDD) using the correction ratio (TDD = 1800 ÷ 

correction ratio) and by subtracting the total bolus dose (pre-

breakfast, lunch, dinner and bedtime snack doses) from 

TDD. The pre-lunch bolus dose involves the sum of usual 

bolus dose and correction dose computed on the visit day. 

The correction dose was calculated based on the available 

clinical data like pre-lunch BG level correction ratio and pre-

meal BG target (correction factor). The subcutaneous insulin 

absorption kinetics (USCI) was obtained by using equation 

(14) in [12].  
 

TABLE I.  SUMMARY STATISTICS OF IMPORTANT VARIABLES   (N =   12) 

Variable 
Mean 
Value 

SD Value Unit 

Height 171.23 13.3 cm 

Weight 61.96 11.89 kg 

Insulin-CHO Ratio (lunch) 10.61 3.1 no unit 

Usual Pre-lunch Insulin 
Dose 

6.74 3.2 U 

Correction Ratio 49.9 15.8 mg/dl 

Pre-meal Target BG 
(Correction Factor) 

128.7 20.32 mg/dl 

RPE P1(Visit 1 / Visit 2) 3.1 / 3.9 1.75 / 1.4 no unit 

RPE P2 (Visit 1 / Visit 2) 3.9/ 3.6 1.4 / 1.04 no unit 

RPE P3 (Visit 1 / Visit 2) 3.8 / 3.7 1.1 / 0.99 no unit 

RPE P4 (Visit 1 / Visit 2) 4.1/ 4.2 1.04 / 0.99 no unit 

Treadmill Speed (Visit 1 / 
Visit 2)a 

3.48 / 3.5 0.33 / 0.28 
speed 
units 

Treadmill Inclination (Visit 
1 / Visit 2)b 

6.9 / 6.96 2.7 / 2.6 
inclination 

units 
a, b Only overall mean and SD values of the 4 exercise phases in 12 patients are provided for brevity 
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Fig. 2 Proposed hybrid modeling methodology   

 
The pre-treated input data (such as shown in Fig.3) along 

with CGMS data were used to identify the personalized time 
series models. The MISO data were preprocessed by 
removing the means. The system identification tool box in 
MATLAB was used for model identification purpose. 
Initially, the data obtained during one of the two visits were 
used for training and the other day visit data were employed 
for testing (cross validation). Using the initial training and 
test datasets, pre-final personalized BG models for each 
patient were selected from a group of competing models 
based on cross validation plots (of validation data vs. model 
prediction values), cross validation percentage fitness values 
(%FCVal), and residual analysis. Following this, the training 
and testing datasets of the initial datasets were swapped and 
the parameters of the pre-final models were re-estimated. If a 
pre-final model captured important BG trends with %FCVal  > 
60% (a reasonable percentage for noisy clinical/biological 
datasets) after swapping, then that model was selected as the 
personalized model for a particular patient. %FCVal values 
were calculated by:  

 
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 Here, (BGt,Val)scaled and (BGt,Pred)scaled represent the scaled 
validation and model predicted BG values at time, t.  

 
TABLE II.  FINAL RPE REGRESSION MODEL USED FOR PREDICTION OF 

MISSING RPE VALUES IN THE DIRECNET’S CLINICAL DATABASE 

Variable 
Coefficient 

value 

t-stat 

value 
p-value 

Gender (X1) -2.11 -6.742 <0.0001 

Height (X2) 0.095 2.02 0.0294 

Weight (X3) -0.38 -5.69 <0.0001 

Treadmill speed (X6) -3.31 -3.78 0.016 

[(X6) * inclination] (X7) 0.332 5.92 <0.0001 

Intercept 

R-squared/Adjusted R-squared 

16.14  

0.69 / 0.64 
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Fig. 3 Pretreated dynamic input profiles obtained for two outpatient visits.  

 

III. RESULTS AND DISCUSSION 
 The identified personalized model for each patient along 

with the % FCVal obtained using initial and swapped datasets 
can be found in Table III. It can be inferred that the 
personalized models identified for 9 (out of 12) patients 
showed a high %FCVal (>70%) in both initial and swapped 
datasets. Also, each patient followed a different personalized 
model (different model class or order), indicating that the 
inter-patient variability was captured well. After swapping 
and re-estimating the parameters of pre-final models, there 
was about 0.03-12% decrease in %FCVal of 9 patients and 
about 2-7% increase in %FCVal of 3 patients. In case of 
Patient 47, the personalized model structure along with the 
parameter values estimated before and after swapping is 
summarized in Table IV. The directions of the gains were 
correct for both the initial and swapped dataset cases. Also, 
swapping and parameter re-estimation resulted in almost 
similar magnitudes of gains (ki) and exactly the same time 
delay (Tdi) as that of the initial model (which can be observed 
in bold text numbers of Table IV).  

 
TABLE III.  IDENTIFIED PERSONALIZED MODELS WITH %FCVAL VALUES  

Pt 

id.  

Input delay (samples) 
Personaliz-

-ed model 

% FCVal 
a 

1 2 3 4 
Before 

swapping 

After 

swapping 

3 1 2 15 10 P3DZb  88.35 80.76 

47 1 10 14 7 P3DZb 84.2 86.6 

14 29 1 1 1 P1D b 72 75 

19 15 3 7 2 State space  86.2 86.17 

22 1 11 19 6 BJ 78.3 71.34 

26 1 8 2 1 HWc 73.4 65.5 

29 1 21 3 21 P2DZb 77.3 75.7 

32 1 2 19 2 P2DZb 84 73 

38 1 3 14 1 HWc 72.5 79.2 

44 1 27 7 14 P2DZb 71.5 60.5 

6 1 19 18 8 P2DZb 71 62 

54 1 7 3 5 HWc  79.8 71.31 

a. % fitness is based on the validation trends; b. Process transfer function model with P-Poles, D-
Delay, and Z-Zero;  

c. Hammerstein-Wiener (HW);  
d. Box Jenkins (BJ);  

Inputs 1, 2, 3, 4 denote UB, UG, USCI, RPE, respectively 
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TABLE IV.  PERSONALIZED MODEL STRUCTURE AND PARAMETER VALUES 

OF PATIENT 47 (BEFORE AND AFTER DATASET SWAPPING) 

Personalized model: P3DZ 

BG(t) = G1(s)u1+ G2(s)u2 + G3(s)u3 + G4(s)u4 

(1- )
= * (- )

(1+ )(1+ )(1+ )

w here 

i zi

i di

p 1 i p 2 i p 3 i

k T s
G ( s ) exp T s

T s T s T s

i 1 , 2 , 3 , 4

 

Case 
Parameter values before 

swapping 

Parameter values after 

swapping 

i 1 2 3 4 1 2 3 4 

ki 

(mg/dl) 
-0.01 1.5 -1.7 -1.8 -0.01 1.2 -1.9 -1.8 

Tzi 

(min) 
-0.01 9.9 -8.6 -5.4 -0.02 7.6 -8.9 -6 

Tdi 

(min) 
5 50 70 35 5 50 70 35 

Tp1i 

(min) 
48.1 297 41 37.2 42.5 221 58 26 

Tp2i 

(min) 
380 

19.

8 
1.9 115 400 19 1.2 132 

Tp3i 

(min) 
3.25 19 251 188 2.6 36 298 131 

Note: ki=Gain; Tdi=delay; Tzi=zeros; Tp1i, Tp2i, Tp3i-Poles; 

 
In case of patient 3, before swapping the training and test 

datasets,  Box-Jenkins or BJ model and process transfer 
function model (P3DZ) were found to closely mimic the 
patient’s BG dynamics with %FCVal of 78.4% and 88.4%, 
respectively (see Fig. 4(A)). Also, Hammerstein-Wiener 
(HW) model showed %FCVal of about 17% with the initial 
training and testing datasets. However, after swapping the 
training and test datasets, HW model showed a much higher 
%FCVal of about 90%, followed by P3DZ and BJ models with 
%FCVal of 80.8% and 63.4%, respectively (see Fig. 4(B)). In 
this case, HW cannot be chosen as a personalized model 
owing to its inconsistency in BG prediction for initial and 
swapped datasets. Although  both P3DZ and BJ models 
showed about 7% and 15% decrease in %FCVal for the 
swapped data, P3DZ captured most of the crests and troughs 
in the BG trend correctly (with %FCVal of 81%), except for 
BG values between 220 and 230 minutes as seen in Fig. 
4(B)). Hence, P3DZ model was selected as the personalized 
model for patient 3 by discarding its counter parts.  

In case of patient 38, before swapping the datasets, 
autoregressive moving average exogenous input (ARMAX), 
ARX and HW models were identified as pre-final 
personalized BG models with %FCVal of  55%, 52% and 
72.5%, respectively. Unlike patient 3, %FCVal of these three 
competing models increased by 13% (ARMAX), 11% 
(ARX) and 9% (HW) after swapping and re-estimation. 
From %FCVal values and cross validation plots (Figs. 4(c) and 
(d)), the nonlinear HW model was selected as the 
personalized model. Input nonlinearities for meal and bolus 
insulin absorption dynamics and the output nonlinearity for 
BG dynamics were estimated using piecewise linear 
functions. The poles  and zeros+1 values for the linear block 
in HW model were [3 4 4 4] and [1 1 1 1], respectively.  

In a similar way, the personalized models were identified 
for other patients. Linear models like BJ and state-space 
models were identified as personalized models for patients 
22 and 19, respectively. For brevity, results of some patients 
are shown and discussed here. Detailed discussion on the 
personalized models for all 55 patients will be presented in 
future. 
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Fig. 4 Measured CGMS BG vs. model predicted BG profiles before and 

after swapping the training and test data for patients 3 and 38 
 

IV. CONCLUSION 

This work is a first step towards a giant leap of achieving 

personalized, predictive, preventive and participatory 

medicine (P4) in diabetes care. The predictive nature of the 

personalized models developed in this work can be utilized 

to develop personalized prescriptions for exercise, meal, and 

insulin injection.  

ACKNOWLEDGMENT 
The authors thank the DIRECNET for publicly sharing the 

clinical dataset and their timely email correspondence to queries on 

the dataset. Also, N.P.B thanks NUS for providing financial 

support for pursuing doctoral studies.   

REFERENCES 
[1] V.W. Bolie, “Coefficients of normal blood glucose regulation,” J Appl Physiol, vol. 

16, (no. 5), pp. 783-788, September 1, 1961 1961. 

[2] N.P. Balakrishnan, G.P. Rangaiah, and L. Samavedham, “Review and Analysis of 

Blood Glucose (BG) Models for Type 1 Diabetic Patients,” Industrial & Engineering 

Chemistry Research, vol. 50, pp. 12041–12066, 2011. 

[3] C. Cobelli, C. Dalla Man, G. Sparacino, L. Magni, G. De Nicolao, and B.P. 

Kovatchev, “Diabetes: Models, Signals, and Control,” Biomedical Engineering, IEEE 

Reviews in, vol. 2, pp. 54-96, 2009. 

[4] J. Kim, G.M. Saidel, and M.E. Cabrera, “Multi-scale computational model of fuel 

homeostasis during exercise: Effect of hormonal control,” Annals of Biomedical 

Engineering, vol. 35, (no. 1), pp. 69-90, Jan 2007. 

[5] A. Roy and R.S. Parker, “Dynamic modeling of exercise effects on plasma glucose 

and insulin levels,” Journal of diabetes science and technology, vol. 1, (no. 3), pp. 338-

347, 2007. 

[6] D.K. Rollins, N. Bhandari, J. Kleinedler, K. Kotz, A. Strohbehn, L. Boland, M. 

Murphy, D. Andre, N. Vyas, G. Welk, and W.E. Franke, “Free-living inferential 

modeling of blood glucose level using only noninvasive inputs,” Journal of Process 

Control, vol. 20, (no. 1), pp. 95-107, 2010. 

[7] A.C. Utter, R.J. Robertson, D.C. Nieman, and J. Kang, “Children's OMNI Scale of 

Perceived Exertion: walking/running evaluation,” Medicine & Science in Sports & 

Exercise, vol. 34, (no. 1), pp. 139-144, 2002. 

[8] S.G. Mougiakakou, A. Prountzou, D. Iliopoulou, K.S. Nikita, A. Vazeou, and C.S. 

Bartsocas, “Neural Network based Glucose - Insulin Metabolism Models for Children 

with Type 1 Diabetes,” in Book Neural Network based Glucose - Insulin Metabolism 

Models for Children with Type 1 Diabetes, Series Neural Network based Glucose - 

Insulin Metabolism Models for Children with Type 1 Diabetes, Editor ed.^eds., City, 

2006, pp. 3545-3548. 

[9] K. Zarkogianni, A. Vazeou, S.G. Mougiakakou, A. Prountzou, and K.S. Nikita, “An 

Insulin Infusion Advisory System Based on Autotuning Nonlinear Model-Predictive 

Control,” Biomedical Engineering, IEEE Transactions on, vol. 58, (no. 9), pp. 2467-

2477, 2011. 

[10] “Diabetes Research in Children Network (DirecNet) public datasets,” 

in:http://public.direc.net/. [cited March 2012] Accession no. Accession Number| 

Available rom Database Provider|. 

[11] R. Hovorka, V. Canonico, L.J. Chassin, U. Haueter, M. Massi-Benedetti, M. 

Federici, T.R. Pieber, H.C. Schaller, L. Schaupp, T. Vering, and M.E. Wilinska, 

“Nonlinear model predictive control of glucose concentration in subjects with type 1 

diabetes,” Physiological Measurement, vol. 25, (no. 4), pp. 905, 2004. 

[12] G. Nucci and C. Cobelli, “Models of subcutaneous insulin kinetics. A critical 

review,” Computer Methods and Programs in Biomedicine, vol. 62, (no. 3), pp. 249-

257, 2000. 

1253


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

