
Detection of common copy number variation with application to

population clustering from next generation sequencing data*

Junbo Duan†, Ji-Gang Zhang‡, Hong-Wen Deng‡ and Yu-Ping Wang†,‡

Abstract— Copy number variation (CNV) is a structural
variation in human genome that has been associated with
many complex diseases. In this paper we present a method
to detect common copy number variation from next generation
sequencing data. First, copy number variations are detected
from each individual sample, which is formulated as a total
variation penalized least square problem. Second, the common
copy number discovery from multiple samples is obtained using
source separation techniques such as the non-negative matrix
factorization (NMF). Finally, the method is applied to popula-
tion clustering. The results on real data analysis show that two
family trio with different ancestries can be clustered into two
ethnic groups based on their common CNVs, demonstrating the
potential of the proposed method for application to population
genetics.

I. INTRODUCTION

Next generation sequencing (NGS) technology provides a

direct way to study human genome in the level of base pair,

and thus has received widespread attention in biomedical

applications within recent years. Unlike traditional technolo-

gies such as fluorescence in situ hybridization (FISH) and

array comparative genomic hybridization (aCGH), NGS is

an high throughput technology that can output million or

billion short reads from the shotgun sequencing, and thus

provides high resolution mapping of genomic regions. The

huge amount of data can be utilized for de novo assembly

[1], single nucleotide polymorphisms (SNPs) calling [2],

structural variations (SVs) detection [3], etc.

We focus on the detection of copy number varia-

tion (CNV) [4], which covers approximately 10% of human

genome. CNV, as a major form of SV, has been associated

with complex diseases such as autism [5], schizophrenia [6],

Alzheimer disease [7], cancer [8], etc. CNVs are the dupli-

cation or deletion events of DNA segments with size more

than 1 kbp [9]. There have existed several CNV detection

methods [10], [11], [12], [13]; however, all of them focus on

CNV detection from an individual sample, or two samples

including a case and a control sample. In this paper, we

consider the detection of common CNVs, which are the

recurrent CNVs among a population. These common CNVs

can be used for population clustering.

First, the method that was presented in [14] is used

to detect CNVs from depth of coverage (DOC) of each
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sample. Then the non-negative matrix factorization (NMF)

method [15] is employed to detect common CNVs. NMF

is one of the source separation techniques [16]. Lee and

Seung [17] showed that NMF can learn the common in-

formation from multiple data sources, which motivated us

to apply the proposed method to detect common CNVs.

The NMF models the data (detected CNVs in our problem)

as the product of a source matrix and a contribution (or

weight) matrix. Both of them are non-negative matrices.

The source matrix includes the common CNVs, while the

contribution matrix includes the weights of common CNVs

in each sample. Therefore, using the contribution matrix can

cluster population samples into different ethnic groups.

This paper is organized as follows: in Sec. II, the method

to detect common CNVs is presented, based on total variation

penalized least square optimization and NMF method. In

Sec. III, the presented methods are used to population

clustering. We processed a data set downloaded from the

1000 Genome Project for catalog of human genetic variations

(www.1000genomes.org). The data set includes a CEU trio

of European ancestry and a YRI trio of Yoruba Nigerian

ancestry, which can be successfully classified based on their

CNVs using our proposed approach. The paper is concluded

in Sec. IV.

II. METHODS

A. Copy number variation detection from single sample

The raw NGS data contains a huge amount of short reads.

To detect CNVs, firstly these reads need to be mapped to the

reference genome, e.g. build37 (or hg19) of human. After

mapping, we can obtain the depth of coverage (DOC) by

counting the number of mapped reads in the fixed-size, non-

overlapping and consecutive windows [11]. Because of the

correlation between G-C content and DOC [18], G-C content

correction on DOC is often needed.

The data we start with are DOC yi, (i = 1, 2, . . . , N),
where N is the number of windows. Because shotgun

sequencing samples reads randomly on the genomic loci,

the DOC is locally proportional to the copy number, so flat

regions correspond to the same copy number. The detection

of CNVs from DOC is modeled as a change-point detec-

tion problem, with the basic assumption that yi is piece-

wise constant, and the basins/plateaus in yi correspond to

deletions/duplications. Consequently, the CNV detection is

formulated as the following total variation penalized least-
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square optimization problem:

min
xi

{

1

2

N
∑

i=1

(yi − xi)
2 + λ

N−1
∑

i=1

|xi+1 − xi|

}

, (1)

where xi is the denoised or smoothed version of yi that can

be used to call CNVs. The first term in (1) is the fitting error,

and the second term is the total variation penalty. When a

change-point presents between xi and xi+1, a penalty |xi+1−
xi|, i.e. the absolute value of xi+1 − xi, is imposed. λ is

the regularization parameter, which can control the tradeoff

between fitting error and penalty caused by change-points.

Large λ yields low deviation of xi, thus low false positive

rate but at the cost of low true positive rate, and vice-versa.

Because of the page limit, the reader is referred to our earlier

work [14] for the detailed explanation of this criterion, the

efficient algorithm to solve this problem, and the strategy to

select the regularization parameter λ.

B. Common copy number variation call

The common CNV detection is considered in the context

of source separation. The source separation aims to extract

individual sources from their linear or nonlinear mixtures.

The most suitable model for our problem is the instantaneous

mixture [16], which models the data xm ∈ R
N as the

weighted-sum of sources:

xm =

J
∑

j=1

wjmsj , (2)

where wjm denotes the contribution of the j-th source sj

in the m-th mixture data xm. This can be written in matrix

form as:

X = SW , (3)

where X = [x1,x2, . . . ,xM ] ∈ R
N×M contains the M

mixture data; S = [s1, s2, . . . , sJ ] ∈ R
N×J contains the

J sources; and W = [wjm] ∈ R
J×M is the contribution

matrix.

Suppose a population contains M samples X that derive

from J ethnic groups S, the model (3) characterizes the

blood mixing procedure. By factorizing X into S and

W , the pure blood can be found as the J sources, and

the weights of each pure blood in the mix blood form

the contribution matrix W , which can be further used for

population clustering systematically.

When sj’s are assumed statistically independent, famous

algorithms like independent component analysis (ICA) [19]

can be employed to estimate source matrix S and con-

tribution matrix W . However, ICA may yield negative S

and W , which is mathematically sound but not biologically

meaningful. As another approach, given non-negative matrix

X and non-negative constraint on both S and W , the

factorization (3) is known as non-negative matrix factor-

ization (NMF) [15]. From the applications of NMF in the

image processing and documents mining, Lee and Seung [17]

showed that NMF can learn the common information from

the mixture data. Based on this property of NMF, the
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Fig. 1. Detected CNV regions within 40∼46 Mbp. The amplitude of each
spike represents the DOC value.

Fig. 2. Cluster of the contribution matrix W . The two rows labeled w1
and w2 represent the weights of sources s1 and s2.

common CNVs can be found from those detected from each

individual sample.

Lee and Seung [17] proposed a multiplicative update

algorithm to solve (3):

sij ← sij
∑

m

xim

(SW )im
wjm

wjm ← wjm

∑

i

sij
xim

(SW )im

which is simple to implement. However, the convergence of

this method is not fast enough for our sequence data which

has high dimensionality. Therefore, an alternative algorithm

based on projected gradient [20] was used in our study.
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III. RESULTS

We downloaded the aligned sequencing data (BAM file)

of chromosome 21 of six samples from the 1000 Genomes

Project. These six samples include a CEU trio of Eu-

ropean ancestry (NA12878-daughter, NA12891-father and

NA12892-mother) and a YRI trio of Yoruba Nigerian eth-

nicity (NA19238-mother, NA19239-father and NA19240-

daughter).

For each individual sample, first SAMtools [21] was used

to generate the DOC profile from the downloaded BAM

file. The window size was set to 1 kbp to reduce the

computational burden. Then the method proposed in Sec. II-

A was used to detect CNVs. The lower and upper threshold

to call a CNV were determined from the histogram of the

DOC such that 10% (as CNVs cover approximately 10%

of human genome) of short reads falling outside the normal

region. The normal region is defined as the interval between

the upper and lower threshold with center locations at the

peak of the histogram. Fig. 1 shows the detected CNV

regions of the six samples within genomic coordinate 40∼46

Mbp. We note that each sample of YRI trio has a CNV near

genomic coordinate 44.75 Mbp.

Once the CNVs of each individual sample are detected,

the DOC of CNV regions were input as the columns of

mixture matrix X . Each column corresponds to a sample.

Regions without CNV are set to 0. Then we used the NMF

code written by Lin [20] to factorize X into S and W . The

algorithm was initialized with random positive matric S0

and W0. Since there are two ethnic groups, the parameter

J is set to 2. Fig. 2 displays the hierarchical cluster of

W , and Fig. 3 displays the two columns of S. The cluster

result is consistent with that of Magi et al. [22], which

was obtained from chromosome 1, except that the YRI

daughter is genomically closer to her mother than her father.

Interestingly, Fig. 2 shows that source s1 (first column in

S) has higher contribution in the YRI trio compared with

the CEU trio (right half of w1 is ‘hotter’ than the left half).

By comparing s1 with s2 in Fig. 3, we found that s1 has a

significant CNV located near 44.75 Mbp, indicating that this

CNV is a common CNV that can significantly differentiate

CEU trio and YRI trio. To verify this result, the DOCs of

the six individual samples are shown in Fig. 4. It is clear

that all the DOCs of YRI trio have peaks at location 44.75

Mbp, while those of CEU trio do not.

IV. CONCLUSION

We have proposed a method that can discover common

CNVs based on source separation technique (i.e., NMF).

It is shown that using information from common CNVs

are significant in the clustering of different ethnic groups.

Our analysis on real sequencing data from two family trio

supported our method and demonstrate the potential of the

method in uncovering the genetic causes of the evolution.

The proposed method is not constrained to classify only

two ethnic groups as demonstrated in the Results section. The

parameter J controls the number of ethic groups. However,
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Fig. 3. First/Second column (upper/lower penal) of source matrix S within
40∼46 Mbp.

for blind clustering, the choose of J remains an open

question.

It’s worth noting that two related works were published by

Magi et al [22] and Klambauer et al [23] recently. Similar

to our method, both of their proposed methods, namely

JointSLM and cn.MOPS, used multiple samples to detect

CNVs. But their methods are appropriate under different

conditions. The former focuses on the detection of common

CNVs that are recurrent at the same location, while the

latter intends to significantly reduce the false positives using

the information introduced by multiple samples. Magi et al

also presented the clustering approach based on CNVs. They

clustered the columns of mixture matrix X directly. For large

sample size, this method is not applicable because of high

dimensionality of X . Instead, our proposed method cluster

the weight matrix W , which can not only significantly

reduce the data dimensionality but also reduce the variations

in the data, resulting in better analysis.

The future studies include the following goals: (1) to

employ the proposed method to whole genome analysis. In

the current elementary study, to reduce the computation, only

the chromosome 21 was processed and displayed, since it is

the shortest human chromosome; (2) to compare with other

approaches such as JointSLM [22] and cn.MOPS [23]; and

(3) to validate the method with more samples in the study

of evolutionary genetics.
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