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Abstract² Regulome is the dynamic network representation 

of the regulatory interplay among genes, proteins and other 

cellular components that control cellular processes. 

Reconstruction of gene regulatory networks (GRN) delineates 

one of the main objectives of Systems Biology towards 

understanding the organization of regulome. Significant 

progress has been reported the last years regarding GRN 

reconstruction methods, but the majority of them either 

consider information originating solely from gene expression 

data or/and are applied on a small fraction of the experimental 

dataset. In this paper, we will describe an integrative method, 

utilizing both temporal information arriving from time-series 

gene expression profiles, as well as topological properties of 

protein networks. The proposed methodology detects relations  

among either groups of genes or specific genes depending on 

the level of abstraction or resolution requested. Application on 

real data proved the ability of the method to extract relations in 

accordance with current biological knowledge as well as 

discriminate between different experimental conditions. 

 

I. INTRODUCTION 

Modeling and simulation of the regulome delineates one 
of the main objectives of Systems Biology towards 
understanding the functional organization of cells and the 
mechanisms by which mis-regulation leads to certain 
diseases [1,2]. 

Advances in molecular high-throughput techniques have 
generated vast amounts of data for genes and proteins that are 
the two key factors in regulome. Hybridization methods like 
DNA microarrays, provide gene expression measurements 
that offer the ability to monitor the behavior for thousands of 
genes under many experimental conditions. Protein-protein 
interaction (PPI) data descending from various techniques 
depict the physical interactions governing cellular processes. 

Bioinformatics studies over the last decade provided 
algorithmic methodologies that attempted to attribute 
different manifestations of the regulome focusing on one kind 
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of molecular interactions (i.e. gene-gene, protein-protein). 
Specifically, most of the relevant literature regarding 
regulome modeling is divided into two basic directions, 
namely Gene Regulatory Networks (GRN) reconstruction 
dealing with the interrelations among genes and functional 
modules detection that extracts sets of closely functionally 
related proteins. 

    Initial approaches on the GRN reconstruction problem 
exploited gene expression data arriving mainly from 
microarray experiments [3,4]. However, challenges like the 
under-determinism caused by the large number of variables 
and the complexity introduced by the expanded search space 
(i.e. groups of genes co-operate to activate or repress a target 
gene), prohibit data-driven computational models to predict 
accurately large scale GRNs and restrict their application to 
only a few tens of genes. 

Later studies attempted to overcome these constraints by 
applying various compression techniques [5] that, while 
reduced the computational complexity, led to valuable 
information loss. In other cases, various heuristic schemes 
concerning the selection of possible gene regulators were 
integrated as pre-processing steps in the main algorithms of 
reconstruction [6]. While approaches such as these 
contributed towards more efficient both in time and accuracy 
final solutions, still the limiting factor that they act solely 
upon gene expression data, prevents them from revealing the 
DFWXDO�ELRORJLFDO�³SRUWUDLW´ [7]. 

The cornerstone of the proposed methodology is the 
integration of temporal gene expression and PPI data, in the 
form of a composite weighted graph, to increase the 
robustness of the derived results. An important attribute of 
the reformed graph is the  representation of casual 
interactions among individual genes or groups of genes based 
on the requested level of abstraction. Additionally, we 
present a framework to cope with the high dimensionality of  
microarray experiments for retaining all gene expression 
information, thus enabling a realistic large scale overview of 
the transcriptome network. 

 We applied our approach in a known therapeutic agent, 
interferon-beta (IFN-��, in controlling exacerbations in 
relapsing - remitting multiple sclerosis [8] with the scope to 
elucidate its mechanism of action. Little is known, regarding 
the mechanism by which IFN-� exerts its immunomodulatory 
effect at the cellular and organismal level. Our findings report 
a potential mode of action of this agent and reveal hidden 
pathway interconnections that warrant further study.   
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II. METHODS 

As we already mentioned, the first stage of the proposed 
methodology constructs a composite weighted graph based 
on PPI and gene expression data. Specifically, the nodes of 
the graph (henceforth called cnodes) represent groups of 
genes with similar expression profiles and originate from a 
standard clustering process. An edge between a pair of 
cnodes and its corresponding weight delineates the existence 
and the exact number of protein interactions shared among all 
members of the implicated cnodes. At this point, we have to 
mention that, in contrast to other methods that use clustering 
as a lossy compression process to reduce data dimensionality  
[9], we have applied clustering only as a form of data 
grouping, while we retain and employ all gene expression 
profiles present in the dataset. The large clustering resolution 
we have imposed in the original gene expression dataset and 
hence the large similarity among the members in every 
cluster, is biologically justified by the assumption that similar 
gene expression trends imply in many cases functional 
association in the protein level. Furthermore, a large number 
of PPIs between a pair of cnodes (expressed by a high 
corresponding weight value) indicates an analogous degree of 
biological similarity not only between the cnodes forming the 
pair, but also among the members of each one. Under a 
supervised learning point of view, the highly similar gene 
expression profiles in every cluster allow us to consider them 
as noisy manifestations of the same entity described by the 
centroid of the cluster. Hence, members of a certain group 
can be employed to formulate training and test datasets of the 
same entity (centroid) in a machine learning method.  

The last assumptions allow us to provide a pair of 
interconnected cnodes as input to a method for GRN 
reconstruction based on an evolutionary trained multi-layer 
neuro-fuzzy neural network (ENFRN). The method described 
in detail in [6], accepts as input a set of gene expression 
profiles as training and test datasets and automatically 
determines the best potential regulators and target genes.  

The ENFRN-based methodology can detect various types 
of simple or complex relations among genes based on their 
expression levels. This property originates from the capacity 
of the network to describe input / output relations based on a 
set of fuzzy rules. In this study, for reasons of simplicity the 
adapted types of relations are: activation (A->B or B->A), 
inhibition (A-|B or B-|A) or unspecified (A-B), where A and 
B represent a single gene or a small gene set along with a 
score indicating the confidence of the detected relation. 
Interactions bearing a score above a certain threshold are 
retained while the rest of them are disregarded. Finally, the 
type of relation between two cnodes is based on a maximum 
vote scheme concerning the corresponding types of the valid 
regulations extracted among the members of the cnodes. 

A. Data 

 We used a time series microarray dataset studying the 
longitudinal transcriptional profile of blood cells within a 
week of IFN-�� DGPLQLVWUDWLRQ� WR�PXOWLSOH� VFOHURVLV�patients, 
accessible through NCBI's Gene Expression Omnibus 
(http://www.ncbi.nlm.nih.gov/geo/) with series accession 
number GSE5678 [8]. The original dataset contains over 

 
22000 gene probes whose levels of expression were 
measured across 6 different individuals, two patients treated 
with IFN-����7��DQG�7����DQG�IRXU�XQWUHDWHG�KHDOWK\ (control) 
persons (U1-U4). The blood samples from T1, U1 and U3 
were obtained at baseline and at 3.5, 6.25, 9.5, 11.5, 16.5, 25, 
49 and 156 h and from T2, U2, U4 at 7.25, 10.25, 13, 15.5 
and 33 h. 

To construct a coherent and reliable PPI network, we 
combined PPI data from various sources: Ophid [10], MINT 
[11] and BioGRID [12] databases and [13], collecting in total 
59403 interactions among 11266 proteins. 

After removing all genes that did not show significant 
level of differential expression across the two experimental 
conditions, we ended up with 11085 unique gene symbols or 
names. Lastly, we kept only the genes and proteins with 
common names, in both the gene expression and PPI 
datasets, thus resulting to a final number of 9111 
genes/proteins, with 41928 corresponding PPIs (as shown in 
Table 1). The original gene expression dataset was split into 
two datasets, each one consisting of 14 time points, for the 
patient (combining T1 and T2 data) and the control 
(combining the average of U1 and U3 with the average of U2 
and U4) case respectively. 

B. Weighted Graph 

In accordance to the aforementioned concepts, we 
initiated the construction of the two composite weighted 
graphs corresponding to the patient and control conditions, 
by partitioning each gene dataset with k-means algorithm into 
a large number of clusters. At this point, we stress out the 
dual goal fulfilled by clustering procedure. On one hand, we 
demand clusters with high similarity degree, while on the 
other each cluster must include a sufficient number of 
members to serve the needs of the forthcoming reconstruction 
method for training and test datasets. Hence, the cluster 
number was set initially to 150 for each dataset and oversized 
clusters were recursively split with threshold of 100 members 
each. This procedure resulted in 161 clusters for the patient 
dataset and 159 clusters for the control. 

Next, we exploited the PPI dataset, in order to detect the 
interactions among cnodes. In detail, two weighted graphs 
were constructed by defining the weight of an edge as the 
number of PPIs between two cnodes. The two resulting 
networks contained 10734 edges for the patient dataset and 
10696 edges for the control dataset with the maximum value 
of the weight being 127. To select  biologically interesting 
cases, we considered a pair of cnodes connected, only if they 
shared more than 10 PPI relations. The final outcome was a 
graph with 437 edges connecting 125 cnodes for the patient 

TABLE I.   

Stages Patient Control 

Nodes Edges Nodes Edges 

Initial dataset 9111 41928 9111 41928 

Weighted graph 161 10734 159 10696 

Thresholded weighted graph 125 437 114 495 

Reconstructed directed graph 125 242 114 140 

Genes of interest 27 67 16 25 

The table contains information regarding the various operational stages 

of our proposed methodology and its progressive ability to discriminate 

between the 2 different experimental conditions. 
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Figure 1.  Subnetworks of patient (A) and control (B) states depicting interactions among a fraction of cnodes (cluster nodes) related to IFN-� mechanism. 

In (A) 27 cnodes (out of the total of 161) are present and in (B) 16 cnodes (out of 159) respectively. It is evident that the control graph displays low 

interactivity in comparison to the patient, with the latter condition indicative of the triggering of the therapeutic agent mode of action. (The cnodes are 

enumerated based on the clustering procedure of the two datasets.) 

case and 495 edges connecting 114 cnodes for the control. 

For each one of the two different experimental conditions, 
we defined as training set the 50% of farthest genes from the 
centroid of each cnode based on their Euclidean distance and 
as testing set the other 50% of the nearest ones. These values 
were selected based on the operation of the ENFRN 
methodology [6] and to avoid over-training problems. These 
sub-datasets were provided as input to the ENFRN-based 
reconstruction method as previously described.  

Regarding the patient graph, out of the 437 edges 179 are 
characterized as up-regulation, 63 as down-regulation and 
195 as undirected relations and regarding the control graph 
out of 495 edges as 102, 38, 355 respectively. We observe 
that 44.6% and 71.7% of the edges of each case are 
undirected. An undirected relation implies that the 
corresponding cnodes profiles show similar expression 
trends, thus they cannot be classified as up or down 
regulation. 

III. RESULTS AND DISCUSSION 

As mentioned earlier, the proposed methodology can 
provide information of the complete transcriptome graph via 
interactions among cnodes as well as zoom in specific areas 
of interest concerning individual genes/proteins through the 
interactions among cnodes. To test the modeling efficiency of 
our methodology, we focused on a specific subset of the two 
reconstructed graphs (patient and control). Specifically, based 
on information gathered from relative literature [8,14,15], we 
compiled a list consisting of 79 genes implicated in both IFN-
�� PHFKDQLVP and multiple-sclerosis disease. The selected 
genes are enriched with Gene Ontology (GO) terms such as 
immune response, apoptosis, protein biosynthesis and others, 
which are consistent with the canonical path described for 
IFN-� signaling and function. A second list was obtained 
from TFCat database [16] which included 252 genes that 
belonged to our dataset and are known to be transcription 
factors. In both cases, we constructed a subnetwork by 
selecting the cnodes that included at least one gene that either 

belonged in the first list or was transcription factor in a hub 
cnode. A cnode is characterized as hub if it has with Nh or 
more directed edges. In this study, we selected Nh equal to 10 
(trials in the range between 5 and 10 gave the same results) 
and we concluded in a subset of cnodes with 8 and 7 genes 
for patient and control dataset respectively. 

The resulting patient network was densely connected and 
consisted of 27 cnodes with 67 edges, while the 
corresponding control network consisted of 16 cnodes with 
25 edges (Fig. 1). We observed in the patient graph enhanced 
interactivity among cnodes that mainly implicated genes and 
pathways related to the IFN-�� UHJXODWRU\� HIIHFW� RQ�
transcriptome. On the contrary, the majority of the extracted 
relations among different cnodes in the control reversed 
engineered graph mainly reflected cellular physiological 
processes, while its hub cnodes mainly contained 
housekeeping genes.  

Moving forward, we further analyzed the cnode graphs by 
classifying the cnodes in GO categories based on the GO 
terms of the genes of interest that they contain. In the control 
case, we observed that the majority of genes (9 out of 16) 
belonged to the GO term transcription from RNA polymerase 
II promoter, while the rest to other general physiological 
process terms, thus the graph was degenerated in a list of 3 
nodes (data is not shown). On the other hand, the resulting 
patient graph (Fig. 2) displayed enhanced interconnectivity 
among the GO categories, indicating so that a strong external 
perturbation (an immunomodulatory drug) results in an 
increased and coordinated recruitment of several pathways. 
Additionally, we corroborate that the terms apoptosis and 
transcription from RNA polymerase II promoter have a key 
role in IFN-���PHFKDQLVP�ZKLFK�LV�FRQVLVWHQW�ZLWK�ELRORJLFDO�
observations that many processes converge into programmed 
cell death after IFN-���DGministration.  

In Fig. 3, we zoom into three GO categories of the 
aforementioned graph and provide characteristic examples of 
gene-gene interactions that we successfully identified with 
respect to known KEGG pathways [17]. 
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Figure 2.   GO-based graph depicting the patient state. The red nodes in the 

nested networks represent cnodes containing IFN-� related genes. The 

cnodes sharing the same GO term are grouped in one large green node. The 

high density of the graph reflects the enhanced interactivity among 

pathways. 

IV. CONCLUSION 

Initial experiments proved that the proposed methodology 
is an efficient method able to provide results in accordance 
with biological knowledge. In contrast to other methods that 
can only be applied in a small fraction of genes contained in a 
microarray experiment, our method can operate under full 
scale experimental conditions. Its ability to provide 
information under  different levels of abstraction can be a 
valuable resource towards deciphering and better 
understanding the complex modular relations among genes 
and proteins. 

In future work, we plan to incorporate functional module 
extraction algorithms such as DMSP [18], able to operate on 
LQGLYLGXDO�µVHHG¶�FQRGHV�WR�H[WUDFW�VSHFLILF�VXEQHWZRUNV��DQG�
hence further enhance the ability of the method to focus on 
pathways of interest depending on the biological experiment. 
Furthermore, one of the most important steps of the proposed 
methodology is the clustering of gene expression data. As the 
degree of clustering resolution (i.e. number of clusters) is 
increased the noise level in every cluster is decreased and 
hence the biological signal is better preserved. However, 
algorithms like k-means, which was employed in this study, 
fail to adequately operate under large degrees of resolution. 
We are working on algorithms that can address this problem 
and hence further enhance the framework we proposed. 
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