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Abstract—Statistical evaluation of temporal gene expression 

profiles plays an important role in particular biological processes 

and conditions. We introduce a clustering method for this 

purpose, which is based on the expression patterns but is also 

influenced by temporal changes. We compare the results of our 

platform with methods based on expression or the rank of 

temporal changes. The proposed platform is illustrated with a 

temporal gene expression dataset comprised of primary human 

chondrocytes and mesenchymal stem cells (MSCs). We derived 

three clusters in each cell type and compared the content of these 

classes in terms of temporal changes, which can support 

biological performance. For statistical evaluation we introduce a 

validity measure that takes under consideration these temporal 

changes and we also perform an enrichment analysis of three 

central genes in each cluster. Even though we can detect certain 

statistical similarities, these might be due to different biological 

processes. Our proposed platform contributes to both the 

statistical and biological validation of temporal profiles.  

 

I. INTRODUCTION 

The interest on the temporal dynamics of gene 

expression profiles increases dramatically with the 

development of methods to deal with large-scale genomic 

data. The genetic progression of an organism or a disease 

enables the study of complex biological problems and 

facilitates the evaluation of therapeutic protocols based on 

the consideration of the dynamics of molecular 

mechanisms and drug response. To that respect, the 

consideration of the temporal profile of genes in a 

microarray experiment becomes of particular importance 

and several research attempts have been developed aiming 

to capture the temporal dynamics of gene expression. In 

particular, the development of gene-clustering algorithms 

that also detect temporal profiles is becoming increasingly 

important. Statistical bootstrap methods have been 

developed for assigning genes to candidate profiles [1]. 

Ranked-based considerations of the temporal profile have 

been proposed in [2], where the time instances are ranked 

on the basis of the corresponding expression values and 

are used to describe the temporal profile. Furthermore, 

biclustering methods have been developed to discover 

local expression patterns that are consistent in a subgroup 

of conditions or time instances [3]. Most of the developed 

methods consider clustering criteria based on some form 

of coded-shape behavior as opposed to the traditional 

algorithms that are heavily based on gene-expression 

patterns. 
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In ranked-based methods the candidate profiles 

capture only the shape by characterizing both the type of 

temporal progression (increase or decrease) and the points 

of maximum or minimum expression. In biclustering 

algorithms, the temporal behavior of genes is encoded by 

symbols and the coherent expression patterns of 

subgroups of genes in specific time instances (biclusters) 

are characterized as strings of symbols.  

In many biological processes, however, not only the 

temporal behavior but also the expression profile itself is 

important for grouping genes as significant for a 

particular process or condition. In clustering of gene 

profiles therefore, both the temporal shape and the 

expression profile must be considered. In our study we 

attempt to develop tools appropriate for such purposes of 

clustering based on a dual criterion. More specifically, we 

develop a criterion based on expression profile, which is 

also influenced by the shape trend. Following the 

clustering process, we address two issues related to the 

comparison of partitions. The first relates to the derivation 

of correspondences in the two partitions, while the second 

addresses the validity criterion for comparing the 

compactness of clusters in these partitions. The purpose of 

this study is to develop tools for clustering and evaluation 

of cluster quality based on two criteria, expression profile 

and coded-shape values. Overall, it addresses the 

following three issues: 1) Clustering of genes based on 

their expression profile but also influenced by the 

temporal shape of this profile; 2) Similarity Criterion for 

matching similar clusters across partitions based on shape; 

and 3) Validity index of a partition that captures the 

temporal shape of gene profiles. 

In Section II we provide the notation used and present 

our clustering approach in Section III, whereas the 

proposed validity index is introduced in Section IV. The 

results are presented and discussed in Section V. 

II. EXPRESSION PROFILE AND CODED-SHAPE OF TEMPORAL 

BEHAVIOR 

For each gene, the expression pattern in time is 

encoded in a N dimensional vector x , where N represents 

the extent of the time course of interest. The graphical 

representation of expression values 1
i

x  i N     

throughout the time course of interest defines the 

temporal profile of each gene. Furthermore, the difference 

of expressions between two consecutive time points 

defines the shape of each gene. We utilize a coded form 

of the shape that encodes, in a ternary form, the changes 

from one to the next time point. Let 
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          Then, by binning the 

difference values in the set {-1, 0, 1} via a threshold Δ, 

we create the coded shape vector v  of dimensionality N-

1. Thus, in our case a coded-shape string is composed of 

digits that can be used in an arithmetic computations 

rather than symbols.  

Suppose we aim at C clusters 1
t

S t C    , with 

the mean vector of cluster 
t

S  be denoted as 
t

μ . The 

coded-shape of this vector is also derived by the coding 

operator c{.} and is denoted as 
t t

m c μ    Let a 

member of 
t

S  with expression pattern 
j t

x S  which 

happens to have a coded-shape pattern 
j

v  The size N-1 

of the shape patterns, as well as the ternary discretization 

of values imply the existence of only a limited number of 

code vectors 
1

3
N

M


   Thus, each cluster may contain 

a number of coded-shape patterns, numbered from 1,..,M.  

III. CLUSTERING METHODOLOGY 

The proposed methodology for clustering expression 

profiles with the influence of their shape profiles is based 

on a modification of the self-organizing map (SOM) 

methodology composed of three parts. The first step 

derives a number of clusters based on the SOM 

organization of the expression vectors into QxQ nodes. 

Then the nodal weight-patterns of SOM are organized 

into C clusters based on a K-means iterative approach 

with a criterion that is influenced by shape. Finally, each 

sample is assigned to one of C classes based on the 

distance of its expression vector from the mean of each 

cluster. Our contribution to this methodology is the 

criterion used in the second step of organizing the SOM 

nodes. More specifically, the first step derives a number 

(QxQ) of clusters based on the expression profiles. We 

proceed in a second grouping that organizes nodes more 

closely, deriving a small number of clusters. At this point 

we propose to use information about the temporal trend in 

order to favor re-grouping of clusters with similar 

performance. The overall clustering approach is 

summarized in the following. 

First step: Self-Organizing Feature Map 

Repeat SOM iterations until convergence, when the 

absolute squared weight changes is smaller than 0.02 over 

2500 epochs. In our application we use 10x10=100 nodes 

and an extra stopping criterion restricts the number of 

repetitions to 500 the number of nodes, equal to 50000. 

Second step: K-means Clustering of SOM Nodes 

The K-means algorithm aims to further organize the 

groups formed by SOM into C clusters based on the 

minimization of a distance criterion between the samples 

(SOM nodes) and the cluster means, so as to minimize the 

overall variance of each cluster. The K-means scheme 

operates on an iterative form based on the expectation-

maximization (EM) solution. The proposed criterion in 

this step is defined as the overall l2 norm of expression-

vector differences: 

 2
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where wj is a sample (expression vector of a SOM node) 

in the class t with  class mean μt and αj is a weighting 

factor depending on the coded shape of wj compared to 

that of the class mean μt. 

More specifically, 
6 1
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 is the logistic 

function with range [1, 2] evaluated for rj.  This factor 

reflects the coded difference 
1

j tj
r v m    as the l1 

norm of the coded-shape differences corresponding to the 

sample and the class mean, where 

 and 
j j t t

v c w m c μ      are the corresponding 

coded values. Notice that rj ranges in [0, 2], with 0 and 2 

being the cases of no difference and max difference in all 

digits of the code vector. In case of no difference, the 

shape factor αj becomes 1, whereas in max difference in 

all digits this factor becomes 2, thus increasing the 

expression-based distance. Considering this criterion, the 

EM optimization proceeds in discrete steps towards the 

evaluation of new cluster means and the re-assignment of 

samples in classes. At each step, for certain samples 

assigned in a cluster, the sample mean is re-computed as: 

1

j t

jjt
w S

t

μ a w
S 

    

Subsequently, samples are evaluated and re-assigned 

based on the minimum distance from the class means, i.e.  
 2

,
2

ˆ ˆmin
jj t tt

a w μ


    , with the re-computed shape 

factors ,
ˆ

j t
a

 
for the sample j and the tested mean vector 

of the class t. 

Third step: Assignment of initial expression values into 

clusters 

Notice that the second step organizes the nodes of the 

SOM network; the initial expression vectors still need to 

be assigned in one of the C clusters. This assignment is 

performed based on the minimum l2 norm of the 

difference between each expression vector xi and the class 

means μt computed from the 2
nd

 step. 

IV. CRITERIA FOR PARTITION EVALUATION 

In computational biology there is an often need to 

compare two (or more) partitions. In particular, we need 

to find correspondences between the partitions but also 

need to compare the quality of each partition in terms of 

compactness and discrimination of its clusters. For the 

first aspect we need to compare one cluster of the first 

partition with all clusters of the other partition. The 

second task needs to consider the distribution of patterns 

within and across clusters in each partition. For our 

computational needs, we have two possible quantities 
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available, i.e the sample values and the probabilities of 

samples. In our application we consider samples coded by 

their shape codes as ternary strings of size N-1 numbered 

from 1 to M=3
N-1

. 

A.  Cluster Matching based on shape profile 

Each cluster Ci has been assigned a number Li of 

samples, each with a corresponding coded-shape vector. 

The distribution of these shape vectors results in a code 

histogram for numbered codes 1,…,M with probabilities 

p[1],…,p[M]. The cluster similarity metric can be based 

on the difference of code histograms.  In the matching 

process, each cluster of one partition is mapped to the best 

matching cluster of the other partition. Thus, let two 

clusters one with numbered-code probabilities 

p[1],…,p[M] and the other with q[1],…,q[M]. The 

similarity of the two clusters is the summed absolute 

distance of the two probabilities: 

1

M

c
i

D p i q i


      
 

B.  Validity Index based on shape profile 

The proposed index is based on the compactness of 

each code histogram as well as the distance between pairs 

of code histograms. Due to the probability distribution or 

weighting form of the histogram the larger histogram bins 

play much more important role in comparison than 

smaller bins. Consequently, we now rank the probabilities 

in descending order to obtain the ranked probabilities 

p1,…,pM. Ties in ranking are resolved in favor of the 

minimum Hamming distance from the previous string.  

Suppose we have two clusters C1 and C2 of sizes L1 

and L2, respectively. The first has ranked probabilities pi 

corresponding to strings si, where the second has qi 

corresponding to strings ti, i=1,…,M, respectively. In 

order to built an inner-cluster compactness index we will 

use the Hamming distance between two strings in 

descending ranked order, weighted by the probability of 

the second string. This represents the distance between 

two strings obtained from the most to least significant 

ones. The within-cluster distance signified by the most 

significant string is zero. Considering the next-ranked 

string, the codeword distance introduced is the difference 

of codes in as many cases as signified by the probability 

of this string. In general, for the ith-ranked string, the 

distance introduced can be computed from the codeword 

distance from the previous string weighted by the 

probability of the ith string. Thus, for within cluster 

distance we have: 
1 1

1 1 1 2 1 1
1 1

  and  

M M

i i i i i i
i i

Q C d s s p Q C d t t q

 

   
 

              

where d(.,.) signifies the Hamming distance between two 

strings. 

In order now to introduce across-cluster distances, we 

first consider the differences of clusters for each string. 

Thus, for each numbered code we calculate 

 probabilities [ ] =| [ ] - [ ] |Numbered r i p i q i and derive the 

associated 
1 2

probabilities .
M

Ranked r r r    

We have now defined a histogram of the difference or 

probability intersection of the two clusters C1 and C2, 

whose compactness index can be defined as before: 
1

1 2 1 1
1

M

i i i
i

Q C C d z z r



 


        

These indexes reflect the distance of digitized codewords 

signified by their probabilities. Their values are within a 

range [1, K] scaled by (1-r1). The minimum value of the 

index is zero and is obtained when the histogram has only 

one point with probability one. The maximum value is 

attained when the histogram involves two codewords with 

probability ½ each and distance equal to the maximum 

value of K. 

Thus, the ratio of within cluster to across-cluster metrics 

signifies a relevant validity index for each partition P of 

CP clusters referred to as Ranked Shape Index (RSI), 

which accounts for shape similarities, as: 

=1

( ) ( )1
{ } = m ax ,

( , )
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pC

j

j ii
p

p

Q C Q C
i

RSI P
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V. EXAMPLES 

Experimental setup 

We applied our platform to the dataset introduced by 

Bernstein et al. [4] that comprised of pellet culture-

conditioned human primary chondrocytes, and human 

bone marrow-derived MSCs [4]. Their gene-expression 

profiles were analyzed and compared at 4 different days.  

Implication of Validity Indices 

The appropriate number of clusters has been 

considered both manually and using the concept of 

validity indices. In manual consideration we examined the 

shape of temporal profiles and also the properties of 

clusters formed in terms of expression values and 

temporal changes of their samples. We concluded that the 

problem under consideration induces 3 types of gene 

performances (clusters), which are illustrated by their 

temporal expression profiles in Figure 1. Segment a) 

illustrates our proposed mixed clustering scheme, whereas 

section b) demonstrates the expression-based clustering, 

for the cases of MSCs (upper part) and chondrocytes 

(lower part). The clustering in this figure presents the 

prominent two shapes (expressing the largest 

probabilities) of each cluster of the proposed approach 

influenced by coded shape, but it is indicative of the 

performance trends observed in the databases. 

The traditional validity indices, like Davis-Bouldin 

(DB) or Dunn’s index, fail to provide a consistent 

argument regarding the preferred number of clusters. In 

particular, the DB index that somewhat resembles the 

philosophy of RSI at the level of expressions, achieves the 

lowest values for 2 clusters in the proposed mixed 

clustering scheme for both cell types. For the ranked-

based clustering scheme, it fluctuates and is minimized 

for quite large numbers of clusters. Finally, for the 
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clustering scheme based on expression values, the DB 

index is minimized for 3 and 4 classes in the case of 

MSCs and chondrocytes, respectively.  

In contrast, the proposed RSI index shows robust 

performance and indicates an optimal number of 3 

clusters in most approaches considered. More specifically, 

for clustering based on expression values and the 

proposed scheme of combined-purpose clustering 

influenced by shape, the RSI index is minimized at 3 

classes for both cell type databases. The situation is 

slightly different for the ranked-based clustering, as 

discussed in the following, with the RSI obtaining smaller 

values at 2 classes. In this case, the RSI index is 

minimized at a large number of classes (equal to 8), in 

which case the prominent eight classes in terms of coded-

shape patterns appear separately in a single class. The RSI 

index is illustrated in Table 1, along with the 

corresponding DB index (in parentheses). 

 
Figure 1. Expression profiles in three classes for the cases  

of MSCs (upper part) and Chondrocytes (lower part);  

a) proposed mixed-based and b) expression-based clustering 

It is worth mentioning the RSI index favors the 

combined clustering scheme, whereas the DB index 

favors the traditional clustering based on expression 

values. By means of the prominent shapes appearing in 

the clusters of the proposed methodology in Figure 1, we 

can also visually indicate that the proposed method results 

in more tight clusters than the traditional expression-based 

clustering and this is better reflected on the RSI than the 

DB index. In this figure we plot the expression pattern 

over time (4 days) for the two most often appearing trends 

in each cluster. We present the graphs for the proposed 

clustering scheme and the traditional approach based on 

expression. The latter (Figure 1b) operates on the basis of 

a symmetric distance function (l2 norm) so that it is 

forced to include symmetric patterns as in the case of 

cluster 2. On the other hand, the proposed approach 

(Figure 1a) also considers the temporal trend, so that it 

only favors similar-shape performance over time. The 

issue of symmetry is also encoded into the traditional 

validity indices, such as the DB, which favors the latter 

scheme without considering the biological difference 

implied by opposite temporal trends that result in 

symmetric distances from the class centroid.   

RSI Index for each 

Clustering Methodology 
Number of Clusters 

Combined clustering 2 clusters 3 clusters 4 clusters 

MSCs 
1.1546 

(1.1839) 
0.9118 

(1.3646) 
1.3065  

(1.2334) 

Chondrocytes 
1.0058 

(0.9997) 

0.8906 

(1.0553) 

1.1141 

(1.1794) 

Rank-based clustering 2 clusters 3 clusters 4 clusters 

MSCs 
1.0648 

(1.7126) 

1.5489 

(1.9712) 

1.6220 

(1.7621) 

Chondrocytes 
0.9066 

(1.3281) 

0.9104 

(2.1713) 

1.3674 

(1.5124) 

Expression clustering 2 clusters 3 clusters 4 clusters 

MSCs 
1.2793 

(1.1818) 
1.1119 

(0.9257) 
1.4488 

(1.4667) 

Chondrocytes 
1.1602 

(0.9906) 

1.1089 

(0.9780) 

1.3014 

(0.9065) 

Table 1. RSI index for various approaches and cell types;  

the corresponding DB index appears in parentheses 

Overall, our study shows good similarity of classes in 

MSCs and chondrocytes data, which verifies the results of 

the original study [4]. However, the cross-class samples 

need further consideration, since the intermingling of 

classes is quite heavy, beyond the tolerance of errors due 

to measurement noise. In a further attempt to compare the 

two cell types on deeper biological bases, we compare 

three central genes of MSCs and chondrocytes, in each 

pair of matched classes, through a gene enrichment 

analysis. The matched clusters of the two cell types 

express similar temporal trends, but the biological 

processes responsible for this performance is different in 

many aspects, requiring deeper biological interpretation. 

Concluding, our proposed platform comprised of a 

clustering method, similarity criterion and validity index, 

all based on temporal changes. It provides a consistent 

tool that facilitates the statistical validation but also the 

biological evaluation of temporal profiles. 
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