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Abstract— In this paper we introduce a novel computational 

neuron-model, the Neuroid, which is based on three basic 

operations that are carried out by nerve cells to process the 

incoming information, such as comparison, and frequency 

pulse modulation-demodulation. The model was implemented 

using LabVIEW 10.0, in order to assign to each of these 

operations, an execution block (Virtual Instrument). The 

results of its implementation showed a very similar behavior to 

that exhibited by real neurons. Furthermore, due to its 

simplicity and low computational requirements, it is expected 

that the Neuroid can be used to create several software models 

of biological neural systems, either for research or teaching 

purposes. 

I. INTRODUCTION 

In order to mimic the information processing capacity 
exhibited by the nervous system, numerous efforts have been 
made to emulate the behavior of its functional units, the 
neurons. A first approach was introduced by Lapicque in 
1907 [1], who modeled the neuron as a RC-circuit, basing on 
the capacitive and resistive properties of the cell membrane. 
The integrate-and-fire model proposed by Lapicque, has 
proven to be useful in the study of both, the synaptic 
integration in single neurons and simulations of large neural 
networks, even though the underlying mechanism responsible 
for the generation of action potential was unknown. Several 
decades later, McCulloch and Pitts focused on the “all or 
none” character of nervous activity [2], and developed a 
discrete and oversimplified version of the neuron, so it was 
possible to conceive the neural networks as computing 
machines. From this pioneering work, these “digital neurons” 
have evolved to analog signal processors, taking into account 
the electrophysiological characteristics of living membranes, 
as Hodgkin and Huxley did, by proposing a new model that 
explained the dynamics of the voltage-dependent membrane 
conductances responsible for action potential generation [3]. 

Many advances have also been made in the field of 
semiconductors, emphasizing the fact that the principles that 
govern the conductivity of both, the cell membrane and the 
silicon devices, are very similar. This led to the design and 
implementation of several neural models based on analog 
integrated circuits that have the characteristics of nerve cells, 
by using standard CMOS processes [4]-[7], including some 
models able to emulate spike frequency adaptation, refractory 
period and threshold voltage modulation [8], and others 
based on mathematical models of oscillating biological 
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neurons [9]. There are also hardware-modular 
implementations, as the analog model proposed by Koch and 
Brunner [10], who used a combination of resistors, switches 
and JFET input operational amplifiers to produce specific 
discrete units, through which, it was possible to model the 
structural and functional features of real neurons. 

In order to reproduce spiking and bursting patterns 
exhibited by some types of nerve cells, other neuron-models 
like the one presented by Izhikevich [11] have been 
developed. This model combines the computational 
efficiency of the Lapicque’s integrate-and-fire model, with 
the accurate biological dynamic of the Hodgkin and Huxley 
model, as a result of a two-dimensional reduction of the 
biophysical approach.  It could be said that almost all of these 
neuron-models are based on certain electrical properties of 
the cell membrane. In this paper, we propose a new 
computational neuron-model based on simple operations, 
which emphasizes the functional rather the physiological 
character of nerve cells. 

II. CONCEIVING THE NEURON-MODEL 

The neuron is the functional unit of the nervous system 
(i.e., the smallest structure that can carry out all of the 
functions of the entire system). Neurons, as muscle cells, are 
characterized by their ability to generate and propagate 
electrical signals. These electrical signals can be classified in 
two basic types: graded potentials and action potentials [12].  
Graded potentials are depolarizations or hyperpolarizatons 
whose amplitude is directly proportional to the strength of 
some triggering event (a mechanical, thermal or chemical 
stimulus), traveling through neurons until they reach the 
region known as the trigger zone. If graded potentials 
reaching the trigger zone depolarize the membrane to a 
minimum level known as the threshold voltage, an action 
potential is initiated. If the depolarization does not reach 
threshold, no action potential is begun, and the graded 
potential simply dies out. 

Action potentials are large, uniform depolarizations that 
can travel rapidly for long distances through the neuron. They 
are changes in membrane potential that occur when some 
voltage-gated ion channels open, altering membrane 
permeability to Na

+
 and K

+
, and they differ from graded 

potentials in several ways: (1) all action potentials can be 
considered as “all or none” events, and (2) they do not 
diminish in strength as they travel along the neuron. But, if 
this is so, then how does the neuron transmit information 
about the strength and duration of the stimulus that started the 
action potential? One possible explanation lies in the 
frequency of action potential propagation [12]. It means that, 
for certain range of intensities, if the stimulus increases in 
strength, the number of action potentials fired per unit time 
increases. Likewise, the amount of neurotransmitter released 
at the axon terminal is directly proportional to the total 
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Weak stimulus releases little neurotransmitter

Strong stimulus causes more Action Potentials and releases more neurotransmitter

number of action potentials that arrive per unit time, as 
illustrated in Fig. 1. 

Figure 1.  The influence of stimulus intensity on firing frequency 

(Modified from [12]) 

From a functional perspective, the phenomenon described 
above looks like a pulse frequency modulation-demodulation 
process, only if the stimulus is strong enough to overcome 
the activation threshold. Thus, the first operation involved in 
neuronal activity is a comparison, as McCulloch and Pitts 
established in their neuron-model [2], whereby it is possible 
to conceive a first block similar to a comparator, such that if 
the incoming analog signal exceeds the threshold value, it 
will pass through the block. On the contrary, if the incoming 
signal is not strong enough to overcome the threshold, then 
the outcome will be zero. As the next step, if the relationship 
between the amplitude of the incoming signal and the firing 
frequency is assumed as proportional, the second block can 
be conceived as a pulse frequency modulator, whose outcome 
is an impulse train with a frequency that varies proportionally 
to the input’s amplitude. A mathematical approach is 
proposed as follows: Let s(t) the resulting depolarization that 
reaches the trigger zone, then, the output of the pulse 
frequency modulator block, y(t), is given by 

  ( )  {
   ( )      

∑  (  
   

 ( )     
) 

     ( )       
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where T is the time interval to elapse between one pulse 
and the following, umbr is the activation threshold, and β is 
proportionality constant. For consistence, s(t), β and umbr, 
are dimensionless. As observed, the condition s(t) > umbr 
excludes the division by zero. A third block able to 
demodulate the impulse train was required. Finally, from this 
functional approach, we constructed a novel neuron-model, 
the Neuroid, which preserves the functional essence of the 
cell. We thought that as android is to man, neuroid is to 
neuron. 

III. IMPLEMENTATION 

From (1), each of the stages described previously, was 
translated into algorithmic terms, and rewritten as an 
independent block or Virtual Instrument (VI) in LabVIEW 
10.0 [13] (running on Acer Aspire One). The algorithms are 
described as follows: 

A.  Comparator 

A first algorithm was implemented using a counter 
variable called count1, whose value would increases at each 
cycle, as long as s(t) > umbr, and only until count1 > β/(s(t) – 
umbr). In that case, count1 would be restarted and begin to 
increase again if s(t) overcomes umbr: 

If s(t) ≥ umbr, then 

If count1 > β/(s(t) – umbr), then 

count1 = 0; 

Else 

count1 = count1 + 1; 

Else 

count1 = 0; 

B. Pulse Frequency Modulator (PFM) 

To generate the impulse train, a second algorithm would 
extract the value of count1, keeping the result at 0, until 
count1 = 1, in which case the result would change to 1, only 
at that instant. For any other value of count1, the result of this 
algorithm would remain at 0: 

If count1 = 1, then 

y(t) = 1;  

Else 

y(t) = 0. 

C. Pulse Frequency Demodulator (PFD) 

Finally, to demodulate the impulse train, a third algorithm 
was implemented using a second counter variable called 
count2, whose value would increases as long as the outcome 
from the previous algorithm (y(t)) remains at zero. When that 
outcome changes to 1, which could be interpreted as the 
rising phase of the action potential, the resulting signal would 
be obtained from the reciprocal of the value reached by the 
second counter, and immediately, the counter would be 
restarted. The cycle would repeat until detecting the next 
impulse. The final outcome would be multiplied by a 
regeneration constant, Kr, which would yield a signal similar 
to s(t), called nt_out. To prevent this signal to be extended 
indefinitely, once the stimulus is removed (s(t) = 0), nt_out 
would be 0, as soon as count2 reaches a maximum value, 
called maxcount. 

If input = 1, then 

nt_out = Kr/count2; 

count2 = 0; 

Else 

count2 = count1 + 1; 

If count2 > maxcount, then 

 nt_out = 0. 

After being translated into LabView 10.0, the 3 blocks 
were connected in cascade to assemble the Neuroid, whose 
functional scheme, as well as its configuration parameters, 
are shown in Fig 2.  
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Figure 2.  The Neuroid, functional scheme and parametters 

IV. EVALUATING THE NEUROID 

In order to evaluate the performance of a single Neuroid, 
another VI with similar characteristics to wave generators, 
was implemented. This block was able to generate three 
different kinds of periodical signals (square, triangular and 
sinusoidal), so that it was possible to adjust the amplitude 
(values between 0 and 1), duration and delay (values in ms), 
for each waveform. A testing interface with 3 display 
windows up to 1000 ms, which is shown in Fig. 3, was 
created to observe the incoming signal (1), the signal from 
the axon (2), and the signal representing the amount of 
neurotransmitter that would be released (3). For illustrative 
purposes, the values of umbr and T were set arbitrarily at 0.1 
and 2, respectively, so the performance of the Neuroid was 
evaluated, given 3 different values for β (1.25, 2.5 and 5). By 
applying a series of rectangular pulses whose amplitude was 
incremented in 0.1 steps, from 0 to 1, we obtained 3 different 
intensity-frequency relations. The value of Kr was adjusted to 
obtain the maximum output value for the maximum input 
value. The value of maxcount was adjusted taking into 
account both, the similarities between the input and output 
signals, and the minimum firing frequency reached by the 
Neuroid. 

Figure 3.  Evaluation of a single Neuroid. 

V. NEUROID NETWORKS AND THE SYNAPTIC COUPLING 

To evaluate the performance of the Neuroid as basic 
functional unit of a neural network, some topologies derived 
from Koch and Brunner [10] were used. An additional VI 
was implemented, in order to connect 2 or more Neuroids 
and, at the same time, emulate the excitatory and inhibitory 
influences exerted by neural (synaptic) coupling. This was 
accomplished following the McCulloch and Pitts model [2], 
but omitting the step of comparison, and obtaining, an 
analogical real-valued output. A testing interface with 
display windows up to 1000 ms was created in order to 
observe, not only the input and output signals, but also the 
impulse train that would be transmitted along the axon, as 
shown in Fig 4. Each network consisted of 3 identical 
Neuroids, all of them with umbr = 0.1, T = 2, β = 1.25, Kr = 
2.1 and maxcount = 24. Synaptic couplings were 
implemented in both topologies to combine excitatory and 
inhibitory influences (where the synaptic weights W1 and W2, 
according to [2], were set at 1 for excitatory, and at -1 for 
inhibitory, respectively).  

Figure 4.  A couple of Three-Neuroid Networks. 
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VI. DISCUSSION AND CONCLUSIONS 

As illustrated in Fig 4(a), activity was observed in the 
axon of the Neuroid C (5), only when the excitatory 
influence, which was modulated as a sinusoidal wave for the 
Neuroid A (1 and 2), exceeded the inhibitory influence 
exerted by the constant firing rate of the Neuroid B (3 and 
4). For the closed loop network depicted in Fig 4(b), burst 
patterns were observed in the axons of Neuroids B (3) and C 
(4), as a result of applying a constant amplitude signal s(t) = 
0.7 (1) to the Neuroid A. These patterns were quite similar to 
those obtained by Koch and Brunner [10], and Izhikevich 
[11], suggesting that our functional approach would be able 
to mimic the behavior of some physiological neural 
networks, with a well known and relatively easy to 
implement architecture. 

All parameters were chosen arbitrarily to provide, 
regardless of the sensory modality, a qualitative description 
of the changes in the incoming signal (i.e. the stimulus), 
once it reaches sufficient intensity to overcome the 
activation threshold, and then be transmitted as an impulse 
train, to finally be demodulated into an analog signal. We 
think that it could be very useful for teaching purposes. 
However, these values may also be the result of a well 
studied physiological process, such as the membrane 
potential, for which already exist several biophysically 
accurate models (like the one proposed by Hodgkin and 
Huxley). These models could also be implemented in 
LabVIEW, in order to get a more physiologic Neuroid, and 
for instance, more realistic. Furthermore, although it is 
known that there are differences between sensory neurons in 
regard to their activation thresholds [12], little is known 
about their intensity-frequency, assumed to be proportional 
in this work. Few studies show frequency-intensity curves 
for certain types of neurons, and even fewer are able to 
establish if the relationship between stimulation intensity 
and the number of action potentials emitted per unit of time, 
is linear, quadratic, logarithmic or exponential. This could be 
the object of study for future research, which would allow, 
not only to expand the knowledge we have about the 
neurobiological phenomenon, but also to get better 
approaches in the field of the neural modeling. 

Here, we conceived, designed and implemented a novel 
neuron-model from a functional approach. Despite of its 
simplicity, it has some features worth highlighting. First, its 
modular design, simplicity, and low computational 
requirements, allow the connection of a large number of 
Neuroids, in order to study the behavior of certain 
physiological neural networks, whose outcomes are given by 
both, excitatory and inhibitory interactions (e.g. the Gate 
Control System, introduced by Melzack and Wall in 1965 
[14]). Second, the model is parameterizable, it means that is 
possible to change the values of the Neuroid’s parameters, 
such as β, umbr (the activation threshold), and also, to add 
delay blocks for emulating the behavior of different types of 
nerve cells (e.g., mechanoreceptors, nociceptors, corticals, 
etc.). Third, through its implementation in LabVIEW, it is 
feasible to dynamically modify the values of the parameters 
described above, which allows modeling some 
neurophysiological phenomena, such as long-term 
potentiation (LTP) and peripheral sensitization, both 
involved in pain processes. We don’t know if the Neuroid 

belongs to one of the levels described by Herz et al. [15]. On 
the other hand, it is worth remembering that every model, 
whether simplified, biophysically accurate, or functional, 
represents a different approach to understanding a particular 
problem, and will be the specific aspects of that problem 
what will lead us to choose the best approach. 
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