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Abstract— Multi-scale models of the cardiovascular system
provide new insight that was unavailable with in vivo and
in vitro experiments. For the cardiovascular system, multi-
scale simulations provide a valuable perspective in analyzing
the interaction of three phenomenons occurring at different
spatial scales: circulatory hemodynamics, ventricular structural
dynamics, and myocardial excitation-contraction. In order to
simulate these interactions, multiscale cardiovascular simula-
tion systems couple models that simulate different phenomena.
However, coupling methods require a significant amount of
calculation, since a system of non-linear equations must be
solved for each timestep. Therefore, we proposed a coupling
method which decreases the amount of calculation by using
the Kalman filter. In our method, the Kalman filter calculates
approximations for the solution to the system of non-linear
equations at each timestep. The approximations are then used
as initial values for solving the system of non-linear equations.
The proposed method decreases the number of iterations re-
quired by 94.0% compared to the conventional strong coupling
method. When compared with a smoothing spline predictor, the
proposed method required 49.4% fewer iterations.

I. INTRODUCTION

In silico experiments provide a third mode of analysis,

when in vivo and in vitro experiments are not adequate for

the investigation of complicated systems. In these models,

individual models that describe a certain phenomenon in

the cardiovascular system such as excitation-contraction of

myocardial cells or the hemodynamics or the circulatory

system are solved simultaneously by using coupling meth-

ods. Coupling models of different scales brings us closer

to describing the complex cardiovascular system. However,

coupling models of different scales introduces stability issues

and requires extensive calculation [1], [2]. For this reason,

many multi-scale models limit the number of models in its

composition or simplify these models.

Previously, we proposed a coupling method that was

stable and faster than conventional methods [1]. In this

method, before a system of non-linear equations was solved

at each timestep, a predictor was used to calculate an initial

approximation for the root-finding algorithm. Because the

approximation was close to the solution, the root-finding al-

gorithm required only a few iterations to solve the equations.

For the approximation, the errors contained in the solutions

of past timesteps were first removed by the smoothing spline,

and then from the newly acquired estimates an extrapolator

calculated the initial approximation. This allowed for more
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stable and accurate predictions than methods that did not

perform any error removal.

The study mentioned above showed that the proposed

coupling method completed simulations faster than conven-

tional methods. However, the study manually selected the

smoothing parameter, which required more simulations, and

did not compare the smoothing spline with other smooth-

ing methods. In this paper, we introduce a new coupling

method that uses the Kalman filter for prediction. With

the introduction of this new prediction method, we will be

able to compare its performance with the smoothing spline.

Additionally, methods for automatic parameter selection are

used for both the Kalman filter and the smoothing spline.

II. CARDIOVASCULAR SIMULATION MODEL

In this paper, we used the cardiovascular simulation model

introduced in [1] and [2], which is composed of three

parts: the myocardial excitation-contraction model, the left

ventricular structural dynamic model, and the circulatory

model. However, the equations to stabilize the myocardial

excitation-contraction model, proposed in [2], was removed

in the current study.

A. Myocardial Excitation-Contraction Model

The Kyoto model was used to describe myocardial cell

physiology and contraction dynamics[3]. This model uses

ODEs to describe in detail the excitation-contraction cou-

pling mechanism. Myocardial contraction force calculated

by this model is dependent on sarcomere length. Therefore,

sarcomere length l is the input variable for the function to

calculate contraction force: fb(l).

B. Left Ventricular Structural Dynamic Model

The material properties and structural dynamics of the left

ventricle were modeled by the left ventricular finite element

model (LVFEM)[2]. The LVFEM calculates the equilibrium,

0 = H(L,Fb, Plv, Vlv), (1)

where N is the number of elementsCFb and L are N-

dimensional vectors of contraction force and length, repec-

tively, for each element. Plv and Vlv are ventricular pressure

and volume, respectively.

C. Circulatory hemodynamics

The blood flow within the circulatory system is determined

by the hemodynamic factors. The circulatory hemodynamics,

such as arterial resistance and capacitance, pre-load and

afterload, was modeled by the general 3-element windkessel

model [1].
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In the model, change in left ventircular volume Vlv de-

pends on left ventricular pressure Plv ,

dVlv

dt
= Qin(Plv)−Qout(Plv), (2)

where Qin and Qout is the blood flow from the vein into the

left ventricle and blood flow from the left ventricle to the

artery, respectively.

III. STRONG COUPLING METHOD

The strong coupling method simultaneously solves the

LVFEM, myocardial excitation-contraction model and cir-

culatory model at each timestep. The three equations can be

combined into a system of non-linear equations:

f(x) = 0 x ≡ [L1, · · · , LN ], (3)

where x is a vector containing the lengths used to calculate

myocardial contraction force fb for each element.

In practice an approximation of the solution to Eq. 3 is

obtained by satisfying the inequality f(x) < ε, where ε is

the tolerance.

In the conventional strong coupling method, the initial

values used at the beginning of the root-finding algorithm

for timestep tn is the solution obtained for the last timestep

x(tn−1).

IV. PREDICTION METHODS

The prediction method calculates an approximation to the

solution at the beginning of each timestep by using values

of past timesteps. These values contain error, because of the

convergence tolerance for Eq. 3. Estimates of past values are

obtained and used for the prediction to increase the accuracy

of the approximation. If the approximation is close to the

solution, then the algorithm will find the solution in fewer

iterations.

In this paper, two prediction methods are compared. One

of the prediction methods that uses the smoothing spline

was proposed previously in [1]. The prediction method we

are proposing in this paper uses the Kalman filter. Both of

the methods will be explained in this section. Methods for

automatic parameter selection for the smoothing spline and

Kalman filter will be introduced, as well.

A. Smoothing Spline

1) Smoothing and prediction method: The smoothing

spline is a non-parametric method of removing noise from

the values obtained in past timesteps. The estimations are

obtained by finding the minimizer of the following function:

n∑
i=n−m

(L(ti) − L̂(ti))2 + λ

∫ tn

tn−m

L̂
′′2 dx, (4)

where λ is the smoothing parameter, m is the number of past

timesteps to be estimated, and L̂ is the estimated value.

To calculate an approximation to the solution from the

estimated values, we used the third-order extrapolator:

L
(tn)
0 = 4 · L̂(tn−1) − 6 · L̂(tn−2)

+ 4 · L̂(tn−3) − L̂(tn−4), (5)

where L
(tn)
0 is the approximation of the solution for the

current step.

2) Generalized Cross Validation: Generalized cross-

validation (GCV) is used to select the smoothing parameter

λ in Eq. 4. GCV calculates a score for a value of λ based on

the mean square error of the estimated values. The minimizer

of the GCV score is the optimal λ for the given data set.

B. Kalman Filter

1) Dynamic system model and filtering method: The

Kalman filter makes predictions based on a predefined linear

dynamic system model. The system model has the following

form:

x̂(tn) = Ax̂(tn−1) +w, (6)

where A is the state-transition matrix for state x̂ and w is

process noise.

The relation between the true state that is described by the

system model x̂ and observed state z is defined as

z(tn) = Hx̂(tn) + v, (7)

where H is the observation matrix and v is the observation

noise. Process noise w and observation noise v are assumed

to be white:

p(w) ∼ N (0,Q)

p(v) ∼ N (0,R), (8)

where Q and R are the covariance matrices for the process

and observation noise, respectively.

The Kalman filter calculates the a priori x̂− and the a

posteriori x+ estimates based on the linear dynamic system

model and observation model. The a priori estimate x̂− is

obtained from

x̂−(tn) = Ax+(tn−1) (9)

where x+(tn−1) is the a posteriori estimate from the last

timestep (tn−1).
In the a posteriori step, the filter compares the estimated

observed state Hx̂−(tn) and the actual observed state z(tn),

ỹ(tn) = z(tn) −Hx̂−(tn), (10)

where ỹ(tn) is the innovation. The residual is multiplied with

the Kalman gain K(tn) to correct the a prior estiamte x̂−(tn),

x̂+(tn) = x̂−(tn) +K(tn)ỹ(tn), (11)

where, x̂+(tn) is the a posteri estimate.

The Kalman gain is calculated by the following equations:

P−(tn) = AP+(tn−1)AT +Q (12)

P+(tn) = (I −K(tn)H)P−(tn) (13)

K(tn) =
P−(tn)HT

HP−(tn)HT +R
, (14)

where, P−(tn) and P+(tn) are the covariances for the a prior

and a posterior estimates.
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For our simulation model, we defined the non-zero com-

ponents of the transition matrix A and the state x̂ as

x̂ = [L1, L̇1, · · · , LN , L̇N ]T

A(i,i) = 1, i = 1, · · · , 2N

A(2i,2i+1) = ∆t, i = 1, · · · , N (15)

where (x, y) represent the component in the x th row and y
th column and N is the number of elements in the LVFEM.

The non-zero componenets of the observation matrix H were

defined as

H(i,2i+1) = 1, i = 0, 1 · · · , N − 1. (16)

2) Using the normalized autocorrelation for parameter

selection: The parameters for the Kalman filter are the

covariances for the process and observation noise, σw and

σv, which are used to calculate the matrices Q and R,

respectively. The parameters are optimal if the sequence

of innovation calculated in Eq. 10 is white. To test the

whiteness of this sequence, the normalized autocorrelation

of the innovation for each timestep is calculated. If the

autocorrelations are within the 95% confidence limits, then

the innovation sequence is white, and the parameters are

optimal for the data set [4].

V. EXPERIMENT

A. Methods

In order to determine the parameters for the smoothing

spline and Kalman filter, sample data were obtained by

a simulation performed with the conventional method in

advance. The smoothing parameter λ and the number of

past variables used for the estimation m was determined by

GCV. The parameters for the Kalman filter were determined

by testing if the normalized autocorrelations fall within the

95% confidence limits. The parameters with the most number

of autocorrelations falling within the confidence interval

was calculated by solving an optimization problem. The

parameters obtained by the above mentioned methods are

listed in table 1.

A 4 element LVFEM was used for the experiments.

Timestep length was set to 0.1 ms. Simulations were per-

formed for 4000 timesteps, which is one cardiac cycle for

the Kyoto model. At each timestep, the non-linear system

of equations were solved by Broyden’s method. The conver-

gence criteria was set to 10−4µm. Simulations were executed

on a cluster with 2 Quad-Core AMD Opteron ProcessorsD

DynaBios[5], a simulation platform which includes simBio

[6] to calculate the myocardial cell model and commercially

available finite element method solver MSC Marc, is the

software used for the simulations.

B. Results

Table 2 shows the results from the experiment. Number

of iterations, jacobian evaluations, and function evaluations

are the respective values needed to solve Eq. 3 by Broyden’s

method summed over 4000 timesteps. Function evaluations

refers to the evaluation of Eq. 3. The Kalman filter and

TABLE 1

PARAMETERS

Kalman Filter Smoothing Spline
σw σv λ m

100000 1050 20.2428 57

TABLE 2

RESULTS

Conventional Kalman Filter Smoothing Spline

#iterations 2782 330 167
#jacobian evaluations 1790 263 126
#function evaluations 13942 5382 4671
wall clock time (min) 71.0 31.1 28.8
rmspe1 (%) 4.88E-3 5.52E-4 6.69E-4
rmspe2 (%) - 1.26E-2 1.56E-2

smoothing spline method reduced iterations by 88.1% and

94.0%, respectively, compared with the conventional method.

Wall clock time is the real time from the beginning of the

simulation to completion. The Kalman filter and smoothing

spline reduced wall clock time by, 56.2% and 59.4%, respec-

tively, compared with the conventional method. RMSPE1 is

the root mean square precentage error (RMSPE) between the

initial value (or predicted value for the prediction methods)

and the converged value. RMSPE2 is the RMSPE between

the converged values from the conventional method and the

prediciton methods.

VI. DISCUSSION

A. RMSPE1 and the number of iterations

The proposed prediction methods were able to reduce the

number of iterations needed to solve the non-linear equations.

The precition methods also reduced the RMSPE between

the initial value and the converged value (RMSPE1). The

converged value used here is not the real solution. Therefore,

RMSPE1 does not represent actual error. However, the

correlation between RMSPE1 and the number of iterations

was 9.99. The high correlation between RMSPE1 and the

number of iterations suggests that the prediction methods

reduced the number of iterations by predicting an accurate

approximation to the solution.

B. Relationship of wall clock time and the number of itera-

tions

Although the reduction in the number of iterations was

about ten-fold, the wall clock time was only reduced by

about half. This is because wall clock time is related directly

to the number of function evaluations and not the number

of iterations. Atleast 1 function evaluation is required for

each timestep, and 4 function evaluations are needed for each

jacobian evaluation. The number of function evaluations can

be described by the following equation:

Ufunction = T +N · Ujacobian + Uiterations, (17)

where Ufunction, Ujacobian, Uiterations represent the number

of function evaluations, jacobian evaluations, and iterations,

respectively. T is the number of total timesteps and N is the

number of elements of the LVFEM.
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Fig. 1. Moving average of the iterations at each timestep
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Fig. 2. Moving average of the difference of estimated velocity L̇ from the
Kalman filter

The correlation between the number of function evalua-

tions and wall clock time was 9.93. Therefore, wall clock

time is proportional to the number of function evaluations

and is related to the number of iterations through Eq. 17.

C. Performance difference between the Kalman filter and the

smoothing spline

We will speculate on the difference in performance be-

tween the Kalman filter and the smoothing spline.

The Kalman filter uses a second-order predictor while a

third-order extrapolator was combined with the smoothing

spline. Additional experiments with first to fourth order

extrapolators combined with the smoothing spline did not

show any significant differences (±5 deviations in iterations

from the third-order experiment). Therefore, the difference

in order between the prediction methods did not contribute

to the difference in performance.

In order to analyze the difference in performances, we

looked at the difference in the number of iterations for

each timestep. We saw that the number of iterations differed

significantly between timesteps 850 to 1300. The moving

average (window frame 51 timesteps) of iterations during this

interval is shown in fig. 1. Between timesteps 900 and 1000,

the Kalman filter had fewer iterations than the smoothing

spline. However, from timesteps 1000 to 1200 the number

of iterations for the Kalman filter was higher than that of the

smoothing spline.

Fig. 2 shows the moving averages (window frame 51

timesteps) for dL̇/dt, calculated by the forward difference

of the estimated velocity L̇. Correlation between acceleration

(fig. 2) and iterations (fig. 1) can be observed. This may be

because the filter changes its estimated velocity only when

the current prediction is incorrect. Therefore, the Kalman

filter makes incorrect predictions while sarcomere length is

accelerating. On the other hand, the smoothing spline uses

best-fit and is independent of acceleration. This may be the

reason for the smooothings spline performing better than the

Kalman filter.

VII. CONCLUSION

A new coupling method for a multi-scale cardiovascular

simulation system was proposed. The proposed method used

the Kalman filter to predict approximations to the solutions.

The new proposed method did not perform better than

the previously proposed method, which uses the smoothing

spline.

A major problem with the Kalman filter is that it only

corrects its estimated velocity when an error in prediction

is made. Therefore, if cell contraction is undergoing accel-

eration, the Kalman filter is guaranteed to make errors in

the prediction. Remedying this problem may increase the

performance of the Kalman filter.

Also, we did not test the robustness of these methods and

only performed the experiments under a single set of condi-

tions. Changing the parameters of the models may affect the

performance of the predictors. If experiments are done with

different parameters, the predictors should function under

those conditions, as well. Therefore, the robustness of these

predictors needs to be investigated further.
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