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Abstract— The cost of the medical treatment of low back pain
(LBP) was estimated to be $24 billion in the early 90s. Also,
80% of the LBP is estimated to be due to poor or inappropriate
posture. The ultimate goal of the project is to develop a surface
electromyography (sEMG)-based device that could be used to
prevent and treat LBP by postural re-education or simply for
on-the-spot sEMG feedback. In this paper we present the results
and conclusions of a feasibility study for sEMG-based poor
posture classifier.

The results show that a s-EMG based poor posture classifier
could be possible. The sensitivity for the best linear classifier
model was 72% and the specificity was 78%. The same signal
feature returned very different results from one participant to
another. This inter-subject variability could be due to different
muscular activation patterns during posture correction.

I. INTRODUCTION

The incidence of low back pain (LBP) in the U.S. has been
reported to be second after the incidence of the common
cold [1]. Taking into account the whole population, there is
an 80% chance that a person will seek medical care for a
LBP disorder prior to age 55 [2]. The annual prevalence rate
of LBP is between 15 and 20% and it is the most common
reason for disability in individuals less than 45 years of age.
As stated by Andersson in [3], the mean number of days
of restricted activity is 23.5 days and the mean number of
days lost from work is 8 days due to LBP. In terms of
economic costs, the annual medical treatment of LBP in
the U.S. is estimated to be $24 billion [4]. Additionally,
it is estimated that 80% of back pain is due to poor or
inappropriate posture [5]. This study showed that asymmetry
can be one of the main factors to develop LBP: 97.5% of
200 patients with back pain showed 20% or higher level of
asymmetry; on 40 subjects without pain, the imbalance was
between 5 and 10% . In the United States, LBP is common.
Moreover, LBP is the most common reason for office visits
to orthopaedic surgeons, neurosurgeons, and occupational
medicine physicians. Additionally, it is the second second
most frequent reason for a primary care physician office visit
[6].

Surface electromyography (sEMG) has been widely used
for biofeedback [7] [8] and it seems to be a good candidate
for future use in postural reeducation in LBP prevention and
treatment.

The final goal of the project is to study the feasibility
of a sEMG-based device that could be used to prevent and
treat LBP by postural re-education via on-the-spot feedback

for people that have suffered from LBP, are in treatment
due to LBP or have high risk of suffering LBP. The goal
of the present study is to a) feature selection derived from
sEMG signals and b) evaluation of the classifiers based on
the selected features, in order to select the most relevant
feature to be used in a poor posture detection.

II. METHOD

A. Subjects

Three female (mean age 27.00 ± 3.60 years, mean BMI
20.30 ± 1.62 kg/m2) and 7 male (mean age 32.86 ± 4.88
years, mean BMI 22.95 ± 3.00 kg/m2) subjects participated
in this study. Their mean age was 31.10 ± 5.17 years and
mean BMI 22.16 ± 2.87 kg/m2 ). All procedures were in
accordance with the Declaration of Helsinki. All subjects
gave written informed consent for participation.

B. Instrumentation

Eight pairs of disposable surface F-TC1 Skintact elec-
trodes (1cm2, Ag/AgCl) where attached to the target muscles.
The sEMG signals were amplified and digitalized using a 16-
channel 24 bit biosignal g.USBAmp data acquisition device
(g.tec Guger Technologies, Graz, Austria). The raw sEMG
signals were band-pass filtered between 5 and 2000Hz and
with a notch filter at 50Hz. The sampling rate was 4800Hz.

Synchronous video data was also recorded (lateral and
posterior) at a 10 Hz frame-rate using two WebCams (HD
Webcam C310 of Logitech). The physiotherapist could see
all sEMG signals and the lateral and posterior videos.

C. Assessments

After literature review on the influence of muscular groups
involved in back posture [9] [10] [11] [12] [13] [14] [15], the
following muscle groups were selected to be monitorized:
Erector Spinae (ES), Latissimus Dorsi (LD), Quadratus
Lumborum (QL) and Abdominal External Oblique (EO).

Two of the participants participated in a back school
program during 8 weeks and were monitored weekly. The
back school program consisted in daily exercises during 45
minutes. The set of exercises were designed by a phys-
iotherapist experienced in LBP. Before starting the back
school program the two participants were monitored for three
weeks, as well as after the end of the back school program.
Eight control participants conducted only one day test.
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Each monitoring session consisted on 2 blocks of 6 posture
corrections (three in a sitting down position and three in
standing up position). If the participant was not tired, he/she
was encouraged to perform another posture correction trial
at the end of each block in their preferred position (standing
up or sitting down). Between each block the participant had
a 5 minute break relax (walk, stretching, drink, ...).

Each posture correction was divided in three phases.
· Natural Posture: The participant was asked to maintain

during 25 seconds as steady as possible the posture that
he considered as normal. Figures 1a and 1c.
· Correction Phase: The participant followed the instruc-

tions of the physiotherapist until the correct posture was
reached
· Corrected Posture: The participant was asked to main-

tain during 25 seconds the same posture as steady as
possible with no further correction indications. Figures
1b and 1d.

(a) Natural poste-
rior view

(b) Corrected
posterior view

(c) Natural lateral
view

(d) Corrected lat-
eral view

Fig. 1: Natural and corrected postures pictures

D. Electrode placement

Eight pairs of electrodes (4 in each side) recorded the
trunk muscle activity of the target muscles on both left and
right sides: Erector Spinae (ES), Latissimus Dorsi (LD),
Quadratus Lumborum (QL) and Abdominal External Oblique
(EO). The electrodes were placed following the indications
of [16], shown in Figure 2b.
· Erector Spinae (ES): The electrodes were placed par-

allel to the backbone. With the hands on the iliac crest,
the thumbs will rest at either L4 or the L4-L5 space. By
palpation, the L2 can be easily located. The electrodes
were placed in both sides of the L2 and L4 as in [10]
and [11].
· Latissimus Dorsi (LD): The first electrode is placed

at the last rib height. The second electrode is placed at
around 45 degrees upwards from this one to about 3cm.

(a) Location of participant,
video and sEMG data acquisi-
tion equipment

(b) Detail of the placement
of the electrodes in low
back

Fig. 2: Experiments setup

· Quadratus Lumborum (QL): The first electrode is
placed at about 3cm to the external side from the L3
electrode of the ES. The second electrode is placed
parallel to the spinal cord, at the same level of the L5.
· Abdominal External Oblique (EO): The first electrode

is placed parallel to the L5 at the lateral, and the
second one at about 45 degrees downwards following
the muscular fibers’ direction.

Both reference and ground electrodes were placed on the
thoracic 7 vertebral segment.

1) Signal conditioning and processing: The sEMG signal
treatment was done according to the European Recommenda-
tions for Surface Electromyography [17]. The sEMG signal
was first high-pass filtered at 20Hz to suppress movement
artifacts.

2) Feature extraction: We obtained eight signals s1 to 8
corresponding to the differential signal for each pair of
electrodes placed as shown in Figure 2b. s1 to 4 targeted the
left side ES, LD, QL and EO muscles, whereas the s5 to 8
targed the right side ES, LD, QL and EO muscles. Each
signal was divided in two chunks. Each signal chunk of N
= 120000 samples (25 seconds) corresponding to the natural
posture and corrected posture. Figure 3 shows the signal after
the chunk corresponding to the correction phase has been
removed. For each chunk (natural and corrected posture), a
set of 32 features were extracted to characterize the sEMG
signals.

Fig. 3: Chunked signal (in gray): left and right muscular
activity during natural posture and corrected posture. The
envelope of the signal is highlighted. The signals were dis-
placed by 500mV for visualization purposes. Top to bottom:
ES, LD, QL, EO.
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The feature vector Γi is composed by:
Average muscular activity (10 features)
• Mean Absolute Value (MAV) |s1 to 8| for each muscle,

P Ampk(equation 1). Features 1 to 8.
• Average of the left and right side muscles independently,

P AmpL and P AmpR (equations 2 and 3 ). Features 9
and 10;

Muscular symmetry related (6 features)
• Difference of activity among left and right homologous

muscle, P Dif(k) (equation 4). Features 11 to 14.
• Difference of activity among sides, P DifLR (equation

5). Feature 15.
• Uniformity of activity of all muscles, P unif (equation

6). Feature 16.
Correlation between muscles (16 features)
• Correlation between homologous muscles,

P Corr Homo(k) (equation 7). Feature 17 to 20.
• Correlation between left muscles, P Corr LSide(k)

(equation 9). Features 21 to 26.
• Correlation between right muscles, P Corr RSide(k)

(equation 10). Features 27 to 32.

Formulae:

P Amp(k) =
∑

N
k=1 |sk(t)|

N
for k = 1 to 8 (1)

P AmpL =
∑

4
k=1 P Amp(k)

4
(2)

P AmpR =
∑

8
k=5 P Amp(k)

4
(3)

P Dif(k) = P Amp(k)−P Amp(k+4) for k = 1 to 4 (4)
P Di f LR = PampL−PampR (5)

P unif =

√√√√ n
∑

i=1
(Pi− ¯P1 to 8)

2

n−1
being n = 8 (6)

P Corr Homo(k) = sk(t)? sk+4(t) for k = 1 to 8 (7)
P Corr LSide(k) = si(t)? s j(t) for k = 1 to 7 (8)

and (i, j)k ∈ {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}
P Corr RSide(k) = si(t)? s j(t) for k = 1 to 7 (9)

and (i, j)k ∈ {(5,6),(5,6),(5,8),(6,7),(6,8),(7,8)}

E. Statistical analysis

A database was built from the trials of all the subjects
using the described features for natural and corrected pos-
tures. Thirty-two classifier models were created, one for each
feature independently, and trained and tested with leave-
one-out crossvalidation. The leave-one-out crossvalidation
is trained multiple times removing a different sample from
the training set and using it as test target each time. This

technique permits computing complete tests using a relatively
small dataset. As a first step, the best classifier model was
chosen taking into account the performance of the classifier
with leave-one-out crossvalidation. The false positives in un-
corrected and corrected postures were not taken into account
in this case, but analyzed aftwer when the best classifier was
selected.

In order to evaluate intersubject variations, the process was
repeated also for each subject independently when sufficient
data was collected.

III. RESULTS

In all, 297 trials were recorded which gave 297 samples
for normal posture and 297 samples for corrected posture.
Therefore, the database consisted in 594 samples with a
feature vector of 32 parameters. Some of these samples, had
to be removed due to movement artifacts, cough during the
trial, etc. The final database consisted on 474 trials. These
features were analyzed using linear discriminant functions
and classified into natural ond corrected groups.

The Table I shows the 5 features with which the best clas-
sifier models were created according to their performance.

In order to graphically view the sensitivity and the speci-
ficity of the two best binary classifier models, receiver
operating characteristic (ROC) curves were drawn for the
top 5 classifiers. The ROC curves of the top 5 classifiers are
shown in Figure 4.

Fig. 4: ROC curve of the best 5 linear binary classifier models

In Table I the data of the best 5 classifier models’ ROC
curve are presented. We also created independent databases,
one for each subject with sufficient data, in order to see the
intersubject variability. These were subjects #1, #2, #3 and
#8 with 220, 188 (skipped two days due to health problems
-not related to LBP-), 34 and 32 samples respectively. The
last two were monitored only one day. The result of the two
best classifiers according to their performance are shown in
Table II.

IV. DISCUSSION

As we can see in Table I the classifier based on the left and
right EO are the ones that have the best performance. Also,
when the classifiers are designed for each subject separately,
the EO activity based classifiers show, in all of the cases
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TABLE I: ROC curve data of top 5 classifiers

Parameter AUC1 S.E.2 95% C.I.3 S.AUC4

P Amp8 0.79606 0.01832 0.76016 0.83197 16.1617
P Amp4 0.78681 0.01867 0.75022 0.82341 15.3600
P Amp6 0.71418 0.02098 0.67307 0.75529 10.2110
P AmpR 0.68792 0.02162 0.64555 0.73030 8.6924
P AmpL 0.64996 0.02239 0.60607 0.69384 6.6977

TABLE II: Best classifiers by subject

Best feature Second Best Feature
S#5 P AUC1 SE2 P AUC1 SE2

1 PAmp8 0.78 0.03 PCorr Homo(4) 0.70 0.04
2 PAmp4 0.87 0.03 PAmp8 0.82 0.03
3 PAmp4 0.74 0.09 PCorr LSide(5) 0.68 0.09
8 PAmp4 0.79 0.08 PAmp8 0.77 0.08

1Area under the curve
2Standard error of the area
3Confidence interval vector of the AUC
4Standarized AUC.
5Subject number

the best scores (see Table II). The 5 classifiers with best
performance across all subjects and all trials were P Amp8,
P Amp4, P Amp6, P AmpR and P AmpL. We counted the
number of times that these features appeared in the best 10
classifiers using individual datasets for each subject. P Amp4
is one of the best 10 classifiers in all of the 4 subjects,
P Amp8 is one of the best 10 classifiers in 3 of subjects,
P Amp6 and P AmpR in two subjects and P AmpL only for
the subject #8.

We expected that the symetry feature of muscular activity
P DifLR would be one with the most robust classification
performance, but only in the subject #4 appears this feature
as one of the best classifiers in 9th place (AUC=0.6680,
SE=0.0965).

The subject that did not follow back school repeatedly
reported tiredness during the test. This lead us to think that
the correct posture was uncomfortable to them, and the mus-
cular activity was altered due to stress and tiredness during
the tests. The two subjects that followed back school, also
reported tiredness during the first trials, but not during the
last ones. The results show much better performance in the
subjects #1 and #2. These subjects have followed back school
program and have gone through many monitoring tests (11
and 9 respectively). We used sensitivity (True positive) and
specificity (True negative) to measure the performance of
the single parametric linear classifiers. The sensitivity for the
overall linear classifier for the P Amp8 feature was 72.0%
and the specificity was 78.1%.

Although the performance of the classifiers are still too
low, the achieved sensitivity was taking into account only
one parameter with a single parameter and linear classifier.
Therefore, we conclude that a sEMG-based poor posture
detection could feasable with more sophisticated classifiers.
The method should be studied further extracting different fea-
tures, using multi-parametric analysis or applying of neural
networks.

This same database will be used to apply other techniques
such as PCA to extract the optimum features to use. Mutiple
feature and clustering techniques will be also analyzed.

ACKNOWLEDGMENT

This work was supported in part by the FIK Project,
San Sebastian, Spain. We would also like to thank to the
physiotherapists Florencia Lara Torres and Ane Iglesias for
their collaborative work.

REFERENCES

[1] R. Deyo, Y. Tsui-Wu et al., “Descriptive epidemiology of low-back
pain and its related medical care in the united states.” Spine, vol. 12,
no. 3, p. 264, 1987.

[2] H. Taylor and C. De Luca, “Development of new protocols and
analysis procedures for the assessment of LBP by surface EMG
techniques,” Development, vol. 34, no. 4, pp. 415–426, 1997.

[3] G. Andersson, “The epidemiology of spinal disorders,” The adult
spine: Principles and practice, 1997.

[4] R. Deyo, D. Cherkin, D. Conrad, and E. Volinn, “Cost, controversy,
crisis: low back pain and the health of the public,” Annual review of
public health, vol. 12, no. 1, pp. 141–156, 1991.

[5] J. Cram, Clinical EMG for surface recordings. Clinical Resources,
1991.

[6] P. Brisson, M. Skovron, and S. Lewis, “Low back pain assessment
training of industry-based physicians,” Development, vol. 34, no. 4,
pp. 371–382, 1997.

[7] K. Calderon and W. Thompson, “Biofeedback relaxation training: a
rediscovered mind-body tool in public health,” American Journal of
Health Studies, vol. 19, no. 4, p. 185, 2004.

[8] R. Gatchel, R. Robinson, C. Pulliam, and A. Maddrey, “Biofeedback
with pain patients: Evidence for its effectiveness,” in Seminars in Pain
Medicine, vol. 1, no. 2. Elsevier, 2003, pp. 55–66.

[9] E. Swinnen, J. Baeyens, R. Meeusen, and E. Kerckhofs, “Methodology
of electromyographic analysis of the trunk muscles during walking in
healthy subjects: A literature review.” Journal of electromyography
and kinesiology: official journal of the International Society of Elec-
trophysiological Kinesiology, 2011.

[10] S. Roy, C. De Luca, M. Emley, L. Oddsson, R. Buijs, J. Levins,
D. Newcombe, and J. Jabre, “Classification of back muscle impairment
based on the surface electromyographic signal,” Journal of rehabili-
tation research and development, vol. 34, no. 4, pp. 405–414, 1997.

[11] L. Oddsson, J. Giphart, R. Buijs, S. Roy, H. Taylor, L. DE et al.,
“Development of new protocols and analysis procedures for the assess-
ment of LBP by surface EMG techniques,” Journal of rehabilitation
research and development, vol. 34, no. 4, pp. 415–426, 1997.

[12] Y. Hu, J. Mak, and K. Luk, “Application of surface EMG topography
in low back pain rehabilitation assessment,” in Neural Engineering,
2007. CNE’07. 3rd International IEEE/EMBS Conference on. IEEE,
2007, pp. 557–560.

[13] Y. Hu, S. Siu, J. Mak, and K. Luk, “Lumbar muscle electromyographic
dynamic topography during flexion-extension,” Journal of Electromyo-
graphy and Kinesiology, vol. 20, no. 2, pp. 246–255, 2010.
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