
  

  

Abstract— Parkinson’s Disease (PD) is a neurodegenerative 
disease that alters the patients’ motor performance. Patients 
suffer many motor symptoms: bradykinesia, dyskinesia and 
freezing of gait, among others. Furthermore, patients alternate 
between periods in which they are able to move smoothly for 
some hours (ON state), and periods with motor complications 
(OFF state). An accurate report of PD motor states and 
symptoms will enable doctors to personalize medication intake 
and, therefore, improve response to treatment. Additionally, 
real-time reporting could allow an automatic management of 
PD by means of an automatic control of drug-administration 
pump doses. Such a system must be able to provide accurate 
information without disturbing the patients’ daily life activities. 
This paper presents the results of the MoMoPa study 
classifying motor states and dyskinesia from 20 PD patients by 
using a belt-worn single tri-axial accelerometer. The algorithms 
obtained will be validated in a further study with 15 PD 
patients and will be enhanced in the REMPARK project. 

I. INTRODUCTION 

Parkinson’s disease (PD) is the second most common 
neurodegenerative disease after Alzheimer’s disease. It is a 
progressive neurological condition resulting from the 
degeneration of dopamine producing neurons in the 
substantia nigra, which is located within midbrain or 
mesecephalon. Though PD can manifest itself at any age, it is 
unusual in persons under 30 years and only 10% of cases 
start before 40. According to the World Health Organization, 
5.2 million people suffer PD in the World and mortality is 
two to five times higher among affected persons than among 
age-matched controls.  

PD symptoms are caused by a decrease in the levels of 
dopamine, due to the death of the nerve cells in the brain that 
produce it. Levodopa (or similar medication) increases 
dopamine production. The main problem when PD patients 
take levodopa or similar drugs is the fluctuation between 
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“almost normal” periods from the motor symptoms point of 
view, known as ON periods, and periods where motor 
symptoms are more evident, known as OFF periods. 
Although disease experience is variable, patients in a 
moderate or severe stage of the disease will cycle between 
ON and OFF periods from three to four times every day. 
With the help of their neurologists, patients need to learn to 
schedule their medication and their activities around their 
ON/OFF cycles. During ON periods, patients report that they 
feel relatively clear and in control of their movements. Often 
during these times, symptoms of PD may be imperceptible to 
all but professionals, except for dyskinesia (involuntary 
movements). During OFF periods, Parkinson’s symptoms 
either re-emerge or worsen before the next dose of 
medication. Patients can experience the full range of classic 
PD symptoms: tremor, stiffness, bradykinesia (slowness of 
movement), postural alteration, lack of muscular 
coordination, difficult handwriting and they also experience 
more frequently the symptom called freezing of gait (FOG). 

An accurate reporting of PD motor states and symptoms 
will enable doctors to personalize medication intakes and, 
therefore, improve the response to treatment. Moreover, real-
time reporting could allow an automatic management of PD 
by means of a drug-administration pump regulated by a 
Personal Health System (PHS). Such a system should be able 
to provide accurate information without disturbing the 
patient’s daily life activities. MicroElectroMechanical Sys-
tems (MEMS), mainly accelerometers and gyroscopes, have 
been widely used to analyze PD movement. A remarkable 
recent study was presented in 2010 by Zwartjes et al. [1], in 
which motor activities (sitting, walking, etc.) and severity 
related to tremor, bradykinesia and hypokinesia were 
analyzed. Six PD patients each wore four sensors at wrist (for 
tremor detection when resting), thigh (for standing/ sitting 
detection), foot (walking) and sternum (lying/standing 
posture). Results showed that the method’s output is 
correlated with Unified Parkinson’s Disease Rating Scale 
(UPDRS) values. Another important study was presented by 
Salarian et al. [2]. They detected and quantified tremor and 
bradykinesia in 20 PD patients by using two tri-axial 
gyroscopes located on each of the forearms. Results showed 
a high correlation with related UPDRS values.  

In order to increase usability it is important to detect PD 
symptoms with a minimum number of devices. This work 
presents a study detecting ON and OFF motor states and 
dyskinesia by using a single accelerometer worn on a belt in 
a population of 20 PD patients. The study is part of the 
Monitoring the Mobility of PD Patients for Therapeutic 
Purposes (MoMoPa) project, and the resulting methods are 
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being tested in another experiment, which is also part of 
MoMoPa project, performed under real-life conditions for 
several hours with 15 PD patients. The results obtained in 
this last stage will be employed as part of the background 
exploited in the Personal Health Device for the Remote and 
Autonomous Management of PD (REMPARK) project. 
REMPARK aims to develop a PHS for the improved 
management of PD. Finally, an enhanced version of the 
algorithms presented in this paper will be used in the Home-
based Empowered Living for PD Patients (HELP) project, 
which will test the use of an apomorphine infusion pump 
regulated according to previously established clinical rules 
based on symptom’s information provided by sensors [13].  

II. MATERIALS AND METHODS 

A. Participants and data acquisition 

The study was divided into two phases and a total of 20 
PD patients participated in it. Patients who participated had 
an idiopatic Parkinson according to UK PD Society Brain 
Bank criteria [12] with ages from 49 to 82 years and were in 
a mild or moderate stage of the disease. For security reasons, 
patients with implanted electronic devices were excluded.  

Patients performed various activities while an inertial 
sensor located at their waist registered acceleration, angular 
velocity and magnetic field measurements. In this study only 
accelerations are used, the other measurements will be 
employed in further analysis. More specifically, ten patients 
performed the first phase protocol which consisted of 
walking three times in a straight line of ~five m. in 
laboratory. Patients also wore movement sensors in both 
shanks, which enabled the validation of the stride-detection 
algorithm presented in subsection C. Ten other patients 
performed the second phase protocol, which included 
activities in the laboratory and outdoors. Laboratory activities 
comprised walking in a straight line, walking over an inclined 
plane, carrying a heavy object, setting a table and going 
upstairs and downstairs. The outside protocol consisted of 
walking for, at least, 15 minutes. Patients that had motor 
fluctuations repeated the experiment in OFF state, induced by 
avoiding the first morning intake of medication. The 
experimental protocol was approved by the local Ethics 
Review Committee. Participants had a mean (st. deviation) 
age of 64.4 (9.3). 

A device developed at CETpD was used to register the 
measures during experiments. The device included various 
MEMS sensors: a tri-axial LIS3LV02DQ accelerometer (±6g 
range), Invensense IDG650 + ISZ650 gyroscopes (±2000º/s 
range) and Honeywell HMC6042 + HMC1041Z magneto-
meters (±1.5 Gauss range). Only acceleration measures were 
used according to the methods presented in this paper. The 
device also included a dsPIC33F microcontroller and a Li-ion 
battery of 1130mAh. The sampling frequency was 200 Hz. 
All signals were filtered by using a 2nd order low-pass 
Butterworth filter with 15 Hz cut-off frequency. Activities 
performed in laboratories were videotaped by 2 cameras. 
During the outdoor protocol, activities and symptoms were 
labeled by a trained observer who used an annotation 
software running on a PDA.  

B. Dyskinesia detection 

Dyskinesia symptoms consist of involuntary movements 
which are associated with chronic levodopa therapy in PD. 
Dyskinesia most commonly occurs when antiparkinsonian 
effects of levodopa are maximal, i.e. during ON states, or 
when the patient is switching between ON and OFF phases 
(biphasic dyskinesia). Thus, a dyskinesia detector is helpful 
to identify the motor state of a patient. 

The dyskinesia detection approach used in this work is 
based on a review of literature. It has been previously 
observed that dyskinesia increases the power spectrum of the 
accelerometer frequency band between 1-4 Hz. Manson et al. 
demonstrated it for an accelerometer located at patient’s 
shoulder [3], and Keijsers et al. also showed it for 6 
accelerometers located at upper arms, upper legs, wrist and 
trunk [4]. It is important to note that walking activity makes 
harmonics appear in the full spectrum. For that reason, the 
activity was removed from the analysis of the former study in 
order to avoid false positives on dyskinesia detection. 

The dyskinesia detection method used in this study 
consists of analyzing the spectrum of the waist accelerometer 
signals obtained. It was considered that whenever the power 
spectrum between 1 and 4 Hz exceeded a certain threshold 
th1, the patient was suffering dyskinesia. Additionally, the 
power spectrum until 20 Hz must be under another threshold 
th2 in order to avoid the false positives. This way, false 
positives that could occur during gait, or other similar 
activities that fill the whole power spectra like ascending or 
descending stairs, are avoided. 

Every 1.6 sec. the algorithm evaluates the frequency 
content of the last 3.2 s. provided by each accelerometer’s 
axis. Accordingly, a positive detection occurs when the sum 
of the power spectra between 1 and 4 Hz exceeds th1 and the 
sum of the power spectra until 20 Hz does not exceed th2. 
This condition must be held during various consecutive 
analyses, i.e. during at least w seconds. This window length 
adds some robustness to the method and was set to 6 seconds, 
according to the minimum duration of the activities. 

C. ON and OFF motor states detection 

During OFF states, various movement disorders that alter 
the patient’s gait appear: rigidity, bradykinesia, freezing of 
gait, festination and postural instability. During ON states, 
symptoms are alleviated and patients move more smoothly. 
In this study, ON and OFF motor states detection was focu-
sed on gait analysis. The main goal consisted of obtaining a 
measuring instrument correlated to ON and OFF motor states 
by means of a single accelerometer located at waist.  

The ON and OFF motor states analysis is based on 
characterizing gait cycles, i.e. strides. A prerequisite is that 
patient should be walking; thus, a gait detector should enable 
gait cycles analysis. The latter analysis should perform, on 
the one hand, an identification of gait cycles from the accele-
rometer signal, i.e. stride detection, and, on the other hand, 
should characterize gait cycles by some features that correla-
tes motor states. Then, a three-step ON and OFF characte-
rization method is obtained, which is represented in Fig. 1. 
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Figure 1.  Three-step ON and OFF motor state characterization 

Gait detection consists of a pattern recognition process 
applied to the accelerometer signal in order to identify 
whether the patient is walking. A bi-class problem arises, 
hence a Support Vector Machine (SVM) [5] is employed. Its 
input consists of various features which characterize a 3.2 
seconds window of the accelerometer signal. A training 
dataset was created from phase-one patient data. It consists of 
more than 800 features obtained from each axis of the 
accelerometer and their magnitude. This includes min, max, 
range, median, average, standard deviation; and spectrum 
power and maximum amplitude in the spectrum or spectra 
band between [b1, b2] Hz s.t. b1 > b2, b1 and b2 � [0, 20] Hz. 
The two most significant features in gait detection, i.e. those 
that maximize inter-class distance and minimize intra-class 
distance, were selected according to a Relief algorithm [6]. 
The SVM was trained with data from phase-one patients and 
validated against data from phase-two patients.  

The stride detection process, which is performed when 
the SVM gives a positive output, takes advantage of how 
acceleration signals from the lower part of the trunk behave 
due to biomechanical characteristics of gait, as described in 
the literature. The onset of gait stance phase, when the heel 
makes contact with the ground, can be determined by a local 
minimum in the forward acceleration observed from the 
lower trunk [7]. This event of the gait cycle is also known as 
‘Initial Foot Contact’ and is considered to establish the 
starting of a step. However, we are interested in strides, 
which are composed of two consecutive steps. 
Discrimination between right and left steps can be performed 
by analyzing relative extrema on lateral acceleration of the 
lower trunk, since it approximately describes a sinus period 
during a gait cycle [8]. Consequently, forward acceleration 
provides step identification and lateral acceleration allows the 
determination of strides. Figure 2 shows the result of the 
stride detection algorithm based on step detection, which was 
previously used in [9, 10], in a phase-one patient. It also 
shows the stride detection validation against the gyroscope 
signal obtained from the shanks. This previously has been 
shown to determine swing phase [11], during which the foot 
is off the ground and which is preceded by stance phase as a 
minimum peak of the signal.  

The stride characterization process aims to extract some 
characteristic from previously detected strides representing 
the smoothness of movement of the patient, i.e. bradykinesia 
and rigidity. This way, several statistics are applied and 
evaluated. The best statistic is considered to be one that 
maximizes the separation between ON and OFF motor states. 
Furthermore, we are interested in a representation that 
linearly separates both motor states and that intuitively 
represents the smoothness of the movement. Thus, the best 
statistic should maximize the Area Under ROC Curve 
(AUC). Furthermore, it is considered that motor states are 
user-dependent; ideally, the border between ON and OFF 
depends on the stage of the disease and the patient. Thus, the 

threshold that best distinguishes both motor states in a certain 
patient is expected to have a different value than the best 
threshold for another patient. This way, AUC is evaluated 
separately in each patient. 

 
Figure 2.  Five strides detected by using a single accelerometer located at 

waist and the algorithm described. Strides are divided into two steps. 
Gyroscope signals from shanks that validate the detection are alse shown.  

III. RESULTS AND DISCUSSION 

A. Dyskinesia detection results 

Threshold values used for th1 and th2 are 1.5 and 1, 
respectively, which were fixed experimentally by evaluating 
data from all phase-one patients and from tenth of the phase-
two patient (Learning group). The results obtained applying 
the method to the rest of phase-two patients (Test group) are 
showed in Table I. 

TABLE I.  DYSKINESIA RESULTS 

Patient Spec. Sens. 
Positive 

pred. value 
Negative 

pred. value 
P1 0.66 1.00 1.00 0.66 
P2 0.33 1.00 1.00 0.50 
P3 1.00 1.00 1.00 1.00 
P4 0.00 1.00 1.00 0.60 
P5 1.00 1.00 1.00 1.00 
P6 1.00 1.00 1.00 1.00 
P7 1.00 0.00 0.80 1.00 
P8 1.00 1.00 1.00 1.00 
P9 1.00 1.00 1.00 1.00 

Average 0.78 0.89 0.98 0.87 
            

The positive predictive value is especially high, which 
means that when the detector provides a positive result it is 
highly likely to be true dyskinesia. Although the specificity is 
not that high, the method provides a good sensitivity. This 
way, it can be used in real environments to assess ON states.  

B. ON and OFF motor states results 

The features selected by Relief algorithm as the most 
relevant for gait detection are the tri-axial power spectra 
between [0.1, 3] Hz and [0.1, 10] Hz. The training set, 
obtained from phase-one patients’ data, was used to train a 
SVM by a 10-fold CV with a RBF kernel. The validation of 
SVM on the testing set obtained from phase-two patient’s 
data provides the following results: specificity 0.84; 
sensibility 0.90, and accuracy 0.94. These results validate the 
resulting SVM as a gait detector for PD patients. 

The stride characterization process evaluates how several 
features representing the strides separate ON and OFF motor 
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states by measuring the AUC. Features maximizing the 
distance between motor states are expected to represent the 
smoothness of movement. Tested features are the same as 
used for gait detection listed in the previous section. Six PD 
patients had ON-OFF fluctuations, and the results of the best 
5 features are shown in table II. The best five features relates 
to tri-axial power spectra values, more specifically features F1 
to F5 are power spectra in bands [0, 10], [0, 8], [0, 7], [0, 6] 
and [0, 5] Hz. How the feature values averaged between 5 
consecutive strides affect the results was also tested, in order 
to add some robustness to the method. The obtained AUC 
values are shown in Table III. 

Results show that an excellent AUC value is provided by 
the tri-axial power spectra in the band of [0, 10] Hz averaged 
between 5 strides and used as a linear classifier. This result 
can be explained according to PD symptoms. The reduction 
of the step frequency and the shortening of stride length and 
speed are common PD gait alterations. Fig. 3 shows two 
typical strides obtained during ON and OFF states and it can 
be observed that OFF motor state provides less amplitude in 
both temporal and frequency domains. 

It is important to note that data from ON and OFF motor 
states are quite pure in the sense that patients performed the 
experiments in OFF state by avoiding the first medication 
intake in the morning. After some recover time, which may 
took up to 3 hours, the experiments in ON were performed. 
Hence, the excellent separation between motor states had 
been facilitated by the bi-modal distribution obtained.  
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Figure 3.  Frequency content of strides in both motor states. 

TABLE II.  ON-OFF MOTOR STATES RESULTS 

Patient AUC F1 AUC F2 AUC F3 AUC F4 AUC F5 

P1 0.820 0.875 0.851 0.812 0.812 
P2 0.904 0.895 0.889 0.858 0.848 
P3 0.822 0.770 0.808 0.767 0.802 
P4 0.855 0.825 0.815 0.883 0.848 
P5 0.889 0.922 0.879 0.898 0.858 
P6 0.805 0.804 0.816 0.781 0.828 

Avg. 0.849 0.848 0.843 0.833 0.833 

TABLE III.  ON-OFF MOTOR STATES AVERAGING 5 STRIDES 

Patient AUC F1 AUC F2 AUC F3 AUC F4 AUC F5 

P1 0.979 0.974 0.981 0.981 0.980 
P2 0.934 0.905 0.894 0.861 0.856 
P3 0.827 0.811 0.816 0.818 0.816 
P4 0.997 0.977 0.960 0.940 0.920 
P5 0.936 0.936 0.921 0.905 0.890 
P6 0.997 0.997 0.997 0.997 0.997 

Avg. 0.945 0.933 0.928 0.917 0.910 

The last stage of this study is testing the algorithms 
obtained in a continuous monitoring of fifteen PD patients 

during approximately six hours in their own home. The 
experiments have already been performed and data obtained 
are being analyzed by means of the presented methods.  

IV. CONCLUSIONS 

This work presents a method to detect dyskinesia and to 
characterize motor states in PD patients. The dyskinesia 
method has been applied to nine PD patients and the ON-
OFF method to six patients who showed motor states 
fluctuations. According to the results, a single belt-worn 
accelerometer is enough to accurately differentiate pure ON 
and OFF states and to detect dyskinesia with a high positive 
predictive value.  

The method for dyskinesia detection showed in this paper 
is based on other works [3, 4]. The statistical analysis of 
strides presented is, to the best knowledge of the authors, a 
novel method which provides a new insight in the gait 
frequency content in PD. 

The methods presented in this work are being applied to a 
new continuous monitoring experiment with 15 PD patients 
under real-life conditions. It is expected that evolution from 
one motor state to the other will be observable in the statistics 
obtained in this work. 
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