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Abstract— The Microsoft Kinect camera is becoming in-
creasingly popular in many areas aside from entertainment,
including human activity monitoring and rehabilitation. Many
people, however, fail to consider the reliability and accuracy
of the Kinect human pose estimation when they depend on
it as a measuring system. In this paper we compare the
Kinect pose estimation (skeletonization) with more established
techniques for pose estimation from motion capture data,
examining the accuracy of joint localization and robustness of
pose estimation with respect to the orientation and occlusions.
We have evaluated six physical exercises aimed at coaching of
elderly population. Experimental results present pose estima-
tion accuracy rates and corresponding error bounds for the
Kinect system.

I. INTRODUCTION

Observation of human activity through various sensor
technologies is becoming increasingly popular in applica-
tions of remote healthcare delivery and disease management.
Until recently, the motion capture systems with active or
passive markers have been used predominantly in the study
of human movement kinematics where one is interested in
the temporal advances of joint position or angles. The motion
capture systems, however, have been due to their size and
cost limited to biomechanics or kinesthetic laboratories rather
than physician’s offices, therapy outfits, or even homes. The
human motion can also be measured through various vision
based cameras using marker-based or marker-less methods
to extract the kinematics.

Recently released Microsoft Kinect camera [1], primarily
intended as a human natural interface for the Microsoft
gaming system XBox 360, has found itself in the mainstream
of development of low-cost alternatives for rehabilitation and
movement analysis. The Kinect camera captures depth and
color images with 30 frames per second (fps), generating
a cloud of three-dimensional (3D) points from an infra-
red pattern projected onto the scene. The Kinect Software
Development Kit (SDK) features real-time tracking of human
limbs for the gesture-based interaction. The underlying body
tracking algorithm [2], which was trained on a large dataset
of depth-images from able bodied users for in-game inter-
actions, has several assumptions, such as users are standing,
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the view is unobstructed, assumes an able bodied user (e.g.
not in a wheelchair), body limbs are away from the trunk
and not interacting with objects.

When applying the Kinect system to human pose estima-
tion in a context other than gaming, it is important to examine
the accuracy and robustness of the algorithms. In our work
we are planning to use the Kinect system for observation and
on-line feedback for coaching elderly people. In the paper we
compare the Kinect pose estimation with more established
techniques for pose estimation from motion capture data
and analyze the accuracy and robustness. We report pose
estimation accuracy rates and corresponding error bounds for
a set of representative exercises, including upper and lower
extremities, in standing and sitting position.

II. RELATED WORK

The 3D depth accuracy of the Kinect camera has been
evaluated quite extensively [3], [4] showing that after calibra-
tion, the camera can provide accuracy of depth reconstruction
in the order of 1-4 cm at the range of 1-4 m. On the other
hand, the accuracy of the joint positions from the Kinect
pose estimation has not been evaluated previously.

Several studies have recognized the advantages of using
an inexpensive depth camera, such as the Microsoft Kinect,
for rehabilitation and assessment of body function. Stone
and Skubic [5] have used several Kinect cameras to measure
temporal and spatial gait parameters for in-home assessment.
In their study they compared parameters obtained from the
Kinect with parameters obtained from a motion capture
system; however, they were only interested in determining
position of the feet and not whole body. Huang [6] developed
Kinerehab system based on the Kinect camera to assist
rehabilitation of patients with muscle atrophy and cerebral
palsy, however, no evaluation of the accuracy was presented.
Lange et al. [7] presented an interactive game-based re-
habilitation tool aimed at improving the balance in adults
after neurological injury. The system was applied in a pilot
study to evaluate the acceptability of Kinect-based therapy,
however, no report was given on the accuracy of the results.
More extensive evaluation of an alternative open source
pose estimation algorithm, Flexible Action and Articulated
Skeleton Toolkit (FAAST), was presented by Schonauer et al.
[8] who used the Kinect for real-time feedback in treadmill-
based training. The authors compared position of hands and
feet using motion capture and Kinect, reporting errors in
the range of 5-7 cm. Up to date we have not found any
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evaluations done on the official Microsoft Kinect SDK pose
estimation.

We recognize that the accuracy of the body tracking to
great extent depends on the type of poses being observed,
distance form the sensor and possible occlusions. Due to
size limitation of the paper, we focus on six exercises
that are more challenging for the pose estimation algorithm
since the subject is either seated or positioned next to a
chair. The tracking in seating position is especially relevant
in a rehabilitation context as users may be bounded to a
wheelchair.

III. ACQUISITION SYSTEMS

We have simultaneously captured human poses using a
marker-based motion capture system Impulse (PhaseSpace
Inc., [9]) and the Microsoft Kinect. Impulse motion capture
system is capable of tracking 3D location of active LED
markers (with unique IDs) with the frequency of 480 Hz
and sub-millimeter accuracy. We used nine infra-red cameras
positioned in a circular fashion to cover workspace of about 3
m × 3 m × 3 m. We have built a custom tight-fitting motion
capture suit containing 43 markers roughly positioned at
standard body landmarks. A skeletonization process then fits
the recorded 3D marker data with an articulated kinematic
chain corresponding to human body.

We have applied two different skeletonization methods
using commercial software. In the first method, using Phase-
Space Recap software, the skeletons are generated at the
time of data acquisition. A two-step calibration procedure is
required prior to the acquisition: (a) the markers are manually
mapped to the corresponding limbs of a predefined skeleton
structure and (b) the limb lengths are estimated based on
a training procedure. The procedure requires the subject to
perform a range of circular movements, one joint at a time
(ankles, knees, hips, wrists and elbows).

The second skeletonization was done offline using Au-
todesk MotionBuilder software [10]. The calibration pro-
cedure here was similar to Recap: after the markers were
manually associated with different sections of human body,
a generic human model had to be adjusted to the captured
LED positions by scaling, translating, and rotating the model
and its segments. As opposed to Recap, the second step
requires manual interaction with the virtual model. One
of the drawbacks of the MotionBuilder pose estimation
algorithm is in its inability to robustly handle missing or
imprecise marker measurements.

Compared to the marker-based system, the Kinect works
with much denser but less precise 3D data. A matrix of
320x240 depth measurements with precision in the cen-
timeter range is captured and used for the skeletonization.
The pose estimation algorithm is fully automatic and does
not require, nor allow, any user interaction, calibration or
correction.

In our experiments we have used a single Kinect camera
positioned at about 3 m distance from the subject – a
minimum distance needed to see whole body of a human.
Poses were captured at 30 Hz.

Fig. 1. Comparison of human pose representation by the three systems:
Kinect, PhaseSpace Recap and Autodesk MotionBuilder. Noticeable differ-
ences are in unnaturally high hip joints by the Kinect and the choice to
represent heels instead of ankles by the PhaseSpace system.

IV. EXPERIMENTS

Initially we have recorded a 30-minute coaching session
that would be normally applied for daily exercise routine
of elderly. From the video recording we have identified
representative exercises that focus on the upper and lower
extremities and captured five subjects performing these ex-
ercises. The captured data include spatial coordinates of
43 LED markers attached to the subjects, measured by
PhaseSpace Impulse system, poses derived from these mark-
ers by PhaseSpace Recap tool and poses estimated by the
Microsoft Kinect. After the recording another set of poses
was obtained by the post-processing of marker data using
Autodesk MotionBuilder.

The setup and calibration of the LED-based motion cap-
ture system took about half an hour for each subject. After
putting on the suit, the subject undertook a calibration proce-
dure to calibrate the position of the joints and limb lengths
by the motion capture software. For the Kinect camera, a
suitable location and elevation was determined to capture
the whole body in both standing and sitting positions. No
other calibration was needed.

The captured data were post-processed by first aligning
all the modalities both in spatial and temporal domain.
The temporal synchronization was obtained from a clapping
action at the beginning of each sequence and from time-
stamps assigned to each measurement. For the spatial align-
ment we took shoulder, elbow and knee locations over all
sequences and computed a rigid 3D transformation (rotation
and translation) that minimized the square distance of the
joints, while ignoring outliers.

The three different methods of pose estimation produced
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Fig. 2. The six exercises in the study: ‘Knee Lift’, ‘Cops and Robbers’, ‘Deep Breathing’, ‘Pendulum Legs’, ‘Stand ups’ and ‘Line tapping’.

Fig. 3. Vertical position of knee joint (from the ground level) during the
Knee Lift exercise. The trajectory of the LED marker attached close to
the knee (black line) is close to ground truth trajectory. Of the skeleton
fitting algorithms the magnitude of the movement is best captured by
PhaseSpace, with Kinect consistently reporting larger and MotionBuilder
smaller numbers. Amount of noise is comparable for all three systems.

kinematic models (i.e. skeletons) which differ in the number
and position of joints, arrangements of which are not fully
anthropometric. Figure 1 shows the three skeletons obtained
for a typical T-pose body configuration. The most significant
differences are the unnaturally high placement of hip joints
by the Kinect and the choice to represent heels instead of
ankles by the PhaseSpace system. Both Recap and Motion-
Builder pre-calibrate the limb (bone) lengths which are then
kept constant through the entire sequence. The Kinect on the
other hand has no such calibration procedure and the limb
lengths vary from frame to frame.

We present results measured in six exercises. In ‘Knee
Lift’ the sitting subject raises knee as high as (s)he can,
alternating between left and right leg. In ‘Cops and Robbers’
exercise, upper arms are kept horizontal (elbows at shoulder

Fig. 4. Vertical position of wrist joint (from the ground level) during
‘Cops and Robbers’ exercise. The joint location is best estimated by the
PhaseSpace system.

height) and lower arms are periodically raised from horizon-
tal to vertical position and lowered back. Third exercise is
‘Deep Breathing’, with only minimal torso movement dur-
ing inhalations and exhalations. Fourth is called ‘Pendulum
Legs’, when, standing behind a chair for support, left legs
are swung to the left and right legs to the right. To avoid
occlusion by the chair, we have recorded this exercise from
behind. Fifth is a balance exercise ‘Stand ups’ from a chair,
with arms crossed on chest. The final sixth exercise is called
‘Line tapping’ in which a standing subject taps a line marked
on the ground in front of him/her. Figure 2 illustrates postures
typical for the exercises. The exercises were recorded at four
different orientations of the subject, ranging from frontal to
side view in 30◦ increment (i.e. the angle between camera
optical axis and the sagittal plane was 0◦, 30◦, 60◦ and 90◦).
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Fig. 5. Upper and lower leg bone lengths determined from the inferred poses as observed in three different orientations of the subject with respect to the
camera. The Kinect estimates body geometry in every frame, varying joint to joint distances.

Fig. 6. Example of a failed skeletonization by the Kinect (green skeleton).
The chair rest was mistaken for the left arm.

A. Pose Estimation Accuracy

In this section we analyze the accuracy of the estimated
skeletons. With exact location of physical joints unavailable,
we are using the position of selected LED markers as ground
truth. We have manually identified parts of the recorded se-
quences where knee and wrist markers were welly vertically
aligned with the physical joints, and used the position on the
vertical axis (ground distance) as a ground truth.

Figures 3 and 4 show ground distance of left knee and
left wrist for the first two exercises. Ground truth trajectories
of the LED markers are drawn with thicker black line, the
joints computed by Kinect are green, joints by PhaseSpace’s
Recap are red and joints by MotionBuilder are blue. From
the three, the best accuracy is achieved by Recap where the
typical error between the LED marker and estimated joint is
about 1 cm most of the time. Typical errors of the Kinect
and MotionBuilder skeletons are about 5 cm.

Fig. 7. Example of a failed skeletonization by the MotionBuilder (blue
skeleton). An incorrectly interpolated trajectory of an occluded marker
displaced the overall location of the skeleton.

B. Robustness of Pose Estimation

The markerless skeleton tracking of Kinect depends solely
on dense depth information and thus frequently fails due to
occlusions (e.g. self-occlusion by other body parts, especially
if only a single Kinect device is used), non-distinguishing
depths (limbs close to the body) or clutter (other objects in
the scene, e.g. a chair). Figure 6 shows an example where
an armrest of the chair was mistaken for the left arm.

The marker-based systems infer the skeleton from only a
small number of sparse measurements and as such are also
susceptible to occlusions of individual markers. For example,
sitting in a chair with the arms folded on the lap hides
large number of markers, consequently providing insufficient
information for proper skeleton fitting. The example in
Figure 7 shows a situation where the MotionBuilder did not
obtain a reasonable pose due to missing readings of markers
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on hips. On the other hand, proximity of other body parts, or
other markers, does not influence the localization of markers,
as they are uniquely identified. Nor do other objects in the
scene intervene with the capture unless they occlude the
markers.

C. Comparing Kinect To PhaseSpace’s Recap

From the observations presented above we concluded that
the Recap system by PhaseSpace provides the most reliable
and accurate pose estimation of the available methods. In
this section we compare the skeletons computed by Kinect
to the ones by PhaseSpace. For each pose t and joint j ∈
{shoulder, elbow, wrist, hip, knee, ankle} we compute
the euclidean distance Dt,j = ||xt,j,Kinect−xt,j,PhaseSpace||2
between 3D positions x of Kinect’s and PhaseSpace’s joints.
The distance is not expected to be zero due to different
underlying human models, but rather of a constant value
µj . The differences in distances due to inaccurate pose
estimation are modeled as Gaussian with standard deviation
σj . In case of failed pose detection, e.g. due to occlusion, the
distances between Kinect and PhaseSpace joints are assumed
to have a uniform distribution on interval (0, 600) mm.

Combined, we consider the distances Dt,j , t ∈ (1 . . . T )
to be realizations of random variable

Dj ∼ ρj · N (µj , σ
2
j ) + (1− ρj) · U(0, 600mm),

a mixture of Gaussian and Uniform distributions. The mix-
ture weight ρj corresponds to the ratio of inliers (cases where
the pose estimation did not fail).

mean dist std. dev mix outliers indicated I indicated O

Joint µj σj ρj
|OP |
T

|IP∩IK |
|IP |

|OP∩OK |
|OP |

Left Hip 213 mm 27 mm 1.00 0% 100% —
Right Hip 234 mm 23 mm 1.00 0% 100% —
Left Knee 79 mm 16 mm 0.78 22% 100% 0%
Right Knee 77 mm 12 mm 0.74 26% 100% 1%
Left Ankle 146 mm 39 mm 0.87 13% 97% 8%
Right Ankle 193 mm 38 mm 0.86 14% 99% 6%
Left Shoulder 49 mm 18 mm 0.85 15% 100% 0%
Right Shoulder 44 mm 17 mm 0.85 15% 100% 0%
Left Elbow 57 mm 25 mm 0.82 18% 95% 8%
Right Elbow 76 mm 31 mm 0.83 17% 96% 0%
Left Wrist 67 mm 30 mm 0.81 19% 97% 86%
Right Wrist 76 mm 42 mm 0.81 19% 93% 61%

TABLE I
PARAMETERS OF DISTRIBUTION D OF L2 DISTANCES BETWEEN JOINTS

OF PHASESPACE AND KINECT SKELETONS, AND THE SUCCESS RATE IN

IDENTIFYING INLIERS AND OUTLIERS BY THE KINECT. ALL EXERCISES,
ALL SUBJECTS, FRONTAL VIEW.

Maximum likelihood estimates of parameters ρj , µj and
σj of the distribution, accumulated over the six exercises
and all subjects, and split by the camera-to-user orientation
angle, are shown in Tables I, II, III, and IV. Largest
distances are seen for hips and ankles, corresponding to the
largest differences between the respective human models.
The outlier ratio, as well as variations in distances, are higher
for joints down the kinematic chain (wrist and ankles) than
for joints at torso.

mean dist std. dev mix outliers indicated I indicated O

Joint µj σj ρj
|OP |
T

|IP∩IK |
|IP |

|OP∩OK |
|OP |

Left Hip 216 mm 30 mm 1.00 0% 100% —
Right Hip 229 mm 22 mm 1.00 0% 100% —
Left Knee 74 mm 20 mm 0.80 20% 99% 2%
Right Knee 88 mm 21 mm 0.81 19% 99% 2%
Left Ankle 148 mm 36 mm 0.86 14% 92% 10%
Right Ankle 158 mm 52 mm 0.87 13% 92% 2%
Left Shoulder 46 mm 18 mm 0.83 17% 100% 1%
Right Shoulder 55 mm 21 mm 0.84 16% 100% 1%
Left Elbow 53 mm 25 mm 0.73 27% 96% 4%
Right Elbow 72 mm 29 mm 0.82 18% 98% 42%
Left Wrist 69 mm 29 mm 0.74 26% 98% 38%
Right Wrist 69 mm 36 mm 0.76 24% 90% 60%

TABLE II
PARAMETERS OF DISTRIBUTION D OF L2 DISTANCES BETWEEN JOINTS

OF PHASESPACE AND KINECT SKELETONS, 30◦ VIEW.

mean dist std. dev mix outliers indicated I indicated O

Joint µj σj ρj
|OP |
T

|IP∩IK |
|IP |

|OP∩OK |
|OP |

Left Hip 216 mm 32 mm 1.00 0% 81% —
Right Hip 225 mm 24 mm 0.99 1% 82% 96%
Left Knee 78 mm 22 mm 0.80 20% 99% 8%
Right Knee 92 mm 21 mm 0.79 21% 98% 15%
Left Ankle 138 mm 35 mm 0.86 14% 93% 22%
Right Ankle 159 mm 55 mm 0.86 14% 85% 20%
Left Shoulder 45 mm 17 mm 0.80 20% 80% 21%
Right Shoulder 64 mm 26 mm 0.75 25% 87% 47%
Left Elbow 52 mm 24 mm 0.72 28% 97% 6%
Right Elbow 73 mm 32 mm 0.79 21% 91% 47%
Left Wrist 73 mm 31 mm 0.71 29% 98% 32%
Right Wrist 67 mm 34 mm 0.70 30% 85% 50%

TABLE III
PARAMETERS OF DISTRIBUTION D OF L2 DISTANCES BETWEEN JOINTS

OF PHASESPACE AND KINECT SKELETONS, 60◦ VIEW.

As expected, the percentage of failed joint estimates
increases, more for the right limbs, as the subject turns away
from the Kinect camera to the right. The Kinect works best
when faced frontally, but the decrease in performance with
the view angle is only gradual.

For each joint the Kinect provides an indication whether
the joint was directly observed or not, in which case it
may have been inferred from past positions and assumptions
about body geometry. Let us denote IPj the set of Kinect
measurements xt,j,Kinect that we classify as inliers based
on the PhaseSpace’s skeleton, i.e. joints at distances Dt,j for
which ρj ·N (µj , σ

2
j ) > (1−ρj)·U(0, 600mm). Similarly, let

IKj be the set of Kinect’s joints indicated as directly observed
by the Kinect. For algorithms subsequently processing the
human pose it would be ideal if the Kinect reliably indicated
which measurements are imprecise, i.e. if the two sets were
identical. Unfortunately they are not. The last two columns
in the tables show the percentage of inliers that were marked
as directly observed joints by the Kinect, and the percentage
of outliers that were marked as unobserved (the closer to
100% the better). In the tables we have denoted the sets of
outliers, complementary to the inlier sets, as OP and OK .

To reiterate, the results are presented under the assump-
tions that the skeletons by Recap are correct and accurate,
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mean dist std. dev mix outliers indicated I indicated O

Joint µj σj ρj
|OP |
T

|IP∩IK |
|IP |

|OP∩OK |
|OP |

Left Hip 212 mm 36 mm 1.00 0% 57% —
Right Hip 228 mm 31 mm 0.96 4% 67% 100%
Left Knee 77 mm 21 mm 0.82 18% 97% 19%
Right Knee 92 mm 21 mm 0.69 31% 95% 40%
Left Ankle 132 mm 35 mm 0.88 12% 93% 27%
Right Ankle 153 mm 56 mm 0.82 18% 78% 36%
Left Shoulder 47 mm 19 mm 0.78 22% 62% 48%
Right Shoulder 60 mm 22 mm 0.51 49% 86% 76%
Left Elbow 53 mm 22 mm 0.70 30% 97% 20%
Right Elbow 74 mm 32 mm 0.64 36% 84% 73%
Left Wrist 75 mm 32 mm 0.72 28% 98% 37%
Right Wrist 63 mm 30 mm 0.54 46% 84% 49%

TABLE IV
PARAMETERS OF DISTRIBUTION D OF L2 DISTANCES BETWEEN JOINTS

OF PHASESPACE AND KINECT SKELETONS, 90◦ VIEW.

and that the differences between Recap and Kinect are rea-
sonably modelled by the chosen Gaussian-Uniform mixture.

D. Stability of Kinect Body Geometry

We have investigated how stable is the frame-to-frame
estimation of body geometry (bone lengths) by Kinect.
Figure 5 shows the measured lengths of the upper and lower
leg during the ‘Deep Breathing’ exercise performed in a
sitting position. The subject was captured in three different
orientations, relative to the camera, approximately 45◦ apart.
The red line indicates bone lengths manually measured on
the subject. Constant lines (blue for left leg, green for right)
are the lengths from Recap, reflecting the accuracy of the
pre-calibration.

During the three repetitions of the exercise the legs were
not moving significantly, yet the variation in Kinect’s bone
lengths was about 2 cm for the frontal view and about 5
cm for the 45◦ view. In the final 90◦ view the Kinect often
failed to recover a meaningful pose since half of the body
was occluded.

To demonstrate changes in geometry between significantly
different postures, the T-pose, and a transition from standing
to sitting position, is included at the beginning of the test
sequence. The leg length variability is much higher there,
about 10 cm, indicating that without markers it is difficult
to determine the exact knee location when the legs are
straightened. Similar behavior was observed for elbows when
the arms are straight.

V. CONCLUSIONS

In this paper we compared the Kinect pose estimation with
more established techniques relying on motion capture data.
We believe system such as Kinect has significant potential as
a low-cost alternative for real-time motion capture and body
tracking in health applications. In the context of physical
exercise of elderly population we observed that the Kinect
skeleton tracking struggles with occluding body parts or
objects in the scene (e.g. a chair). One of the main drawbacks
of the Kinect skeleton for the purpose of healthcare is in a

very non-anthropometric kinematic model with variable limb
lengths.

In a more controlled body posture (e.g. standing and
exercising arms), the accuracy of the joint estimation is
comparable to motion capture. However, in general postures,
the variability of the current implementation of the pose
estimation is about 10 cm. The measurements could be
used to assess general trends in the movement, but for
quantitative estimation an improved skeletonization with an
anthropometric model is needed. Such algorithms should also
address occlusions and self-occlusions, unconventional body
postures or use of wheelchairs or walkers.
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