
  

 

Abstract— One treatment increasing in use for solid tumors 

in the liver is radioembolization via the delivery of 90Y 

microspheres to the vascular bed within or near the location of 

the tumor. It is desirable as part of the treatment for the 

microspheres to embed preferentially in or near the tumor. 

This work details an approach for analyzing the deposition of 

microspheres with respect to the location of the tumor. The 

approach used is based upon thin-slice serial sectioning of the 

tissue sample, followed by high resolution imaging, 

microsphere detection, and 3-D reconstruction of the tumor 

surface.  Distance from the microspheres to the tumor was 

calculated using a fast deterministic point inclusion method. 

 

I. INTRODUCTION 

Solid tumors in the liver, both primary and metastatic, are 
common and challenging for an oncologist.  Despite various 
treatment options, mortality rates remain high, with these 
tumors accounting as the main cause of death for 
approximately 80,000 patients in the United States each year 
[1]. Hepatocellular carcinoma (HCC) is increasingly 
recognized and incidence is growing.  

90
Y microsphere 

therapy delivers high numbers of microspheres with resulting 
high total doses of radiation. 

90
Y is a beta emitting isotope 

that delivers high doses of radiation up to 3mm from the 
sphere, with a half life of 64 hours [2,3]. 

Understanding the distribution of microspheres relative to 
the tumor site is important to determining the amount of 
radiation delivered to the tumors and nearby tissues. Here we 
demonstrate a new approach developed for measuring 
distance between microspheres and a tumor. The steps 
involved are: tissue acquisition; tissue embedding and serial 
sectioning; digitizing tissue at high resolution; labeling the 
images to mark microsphere locations and tumor regions; 
registration of the 2D image series to remove distortions 
caused by the sectioning process and to create a coherent 3D 
tumor volume; and calculation of distances between 
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microspheres and tumors using the Khamayseh-Kuprat 
method [4]. 

II. DATA ACQUISITION 

A. Tissue Sample 

A tissue sample was acquired from a 70 year old man 
with unresectable multifocal HCC who had been treated with 
microsphere therapy. The microspheres delivered were 
SirSpheres (Sirtex Medical Inc) with a mean diameter of 

32m (+/- 8m) and containing 
90

Y. A ~ 2cm x 2cm x 1cm 
block subsection of the tissue sample was then embedded in 
paraffin wax.  

B. Tissue Sectioning and Imaging 

The embedded block of tissue was serial sliced into 8m 

thick sections, with 57 of the sections each spaced 200m 
microns apart preserved on slides ((HistoTox Labs, Inc., 
Massachusetts).  Slides were stained with Hematoxylin & 
Eosin (H&E) to highlight general histological features.  

Each slide was digitized using a Hamamatsu 
NanoZoomer imaged at 20x scan mode (Fig. 1). This created 

an image at 0.460m resolution corresponding to each slide. 
Total size per image was approximately 80,000 x 50,000 
pixels (~4 gigapixel image).  Images were initially stored in 
24-bit RGB ndpi format, and then converted to Bitmap 
format for accessibility. Bitmap images were then 
downsampled to ¼ scale and stored as portable network 
graphic (png) images for analysis.  

III. 3D RECONSTRUCTION 

A.  Labeling Tumor and Microspheres 

An image mask representing the location of the tumor in 
the liver tissue was created for each tissue image.  Using 
Photoshop, this mask was manually drawn as a green region 
on the tissue image by a liver pathologist.  Python and Python 
Imaging Library were used to generate a binary mask image 
representing the tumor from the tumor-marked image.    

A list of microsphere coordinates was created for each 
tissue image. A methodical visual search of the image was 
performed, with each detected microsphere manually marked 
in Photoshop with a single green pixel.  Once all 
microspheres in an image were marked, that image was 
processed using a Python script to create a text file listing of 
microsphere coordinates.  Microsphere coordinates were 
rapidly validated by inspecting a microsphere summary 
image.  This summary image was constructed by a Python 
script that automatically cropped the tissue image around 
each microsphere coordinate, and then tiled the resulting 

Detecting Distance between Injected Microspheres and Target 

Tumor via 3D Reconstruction of Tissue Sections* 

James P. Carson, Member, IEEE, Andrew P. Kuprat, Sean M. Colby, Cassi A. Davis, Christopher A. 

Basciano, Kevin Greene, John T. Feo, Andrew Kennedy 

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

1149978-1-4577-1787-1/12/$26.00 ©2012 IEEE



  

cropped images into a single image. Using this approach, we 
detected and verified 12,707 microspheres. 

B. Pre-alignment Processing 

Misalignments between adjacent images prevent direct 
2D-to-3D data conversion and require appropriate image-to-
image registration to restore the digitized series of 2D images 
representing the tissue sample to a 3D state. During serial 
sectioning, each tissue slice was placed on a separate slide, 
causing misalignment between imaged sections tissues. 
Addressing this type of misalignment requires rigid 
registration (translation and rotation) of images. In addition, 
generalized and localized tissue expansion was introduced as 
part of the standard paraffin sectioning histological 
technique.  Removing these distortions requires unique 2D 

elastic transformation determined for and applied to each 
image.   

To prepare the images for registration, images were first 
downsampled to 1/16

th
 original scale.  Next, images were 

converted to 8-bit grayscale by subtracting the green color 
channel from the blue color channel followed by uniform 
zero-padding (5632x5632). Then, the padded grayscale 
images were downsampled to 1/128

th
 original scale.  

C. Rigid Registration 

During rigid alignment, the translation and rotation 
necessary to align the tissue section images was calculated 
[5].  This calculation was performed using an iterative multi-
scale pyramid approach, with resolution increasing each step 
in order to further refine the optimal translation and rotation 
to align images [6]. The difference between two images was 
based upon the sum squared difference of overlapping pixel 
intensities. The difference score for an image to be translated 
was averaged over up to three prior rigid-aligned images in 
the image series (as available). Once the appropriate image-
to-image rotations and translations were calculated, they were 
applied to the tissue images, the tumor masks, and the 
microsphere coordinates.  This brought all three sets of data 
into 3D rigid registered co-alignment, thus addressing the 
registration issue caused by placing the tissue sections on 
different slides. 

D. Elastic Registration 

To address paraffin-related image distortions, we 
calculated and applied elastic registration to ensure optimum 
continuity of the image sequence. To handle deformation 
outliers, we calculated and averaged four warps for each 
image—to the two images preceding and the two images 
following the image in the series (when available). Warps 
were calculated using the bUnwarpJ plug-in [7] for the 
imaging software package ImageJ. Parameters applied were 
“Coarse” initial warp and “Fine” final warp. The bUnwarpJ 
image registration algorithm represents the images and 
deformations as cubic B-splines, and then utilizes an energy 
function summing the dissimilarity in both directions 
between the source image and target image. Optimization is 
by Levenberg-Marquardt.  After averaging the four warps, a 
single transformation per image was saved as a text file for 
later application.  

The calculated warp definitions were then converted via a 
bUnwarpJ macro from elastic warp definitions—which 
consider translations of the vertices of an affine grid 
overlay—to raw transformations—which contain the 
translational information for each pixel.  Another bUnwarpJ 
macro applies the raw definitions to the liver tissue images 
and the tumor masks.  The process of calculating and 
applying warps was automated as a Python script. 

  Surfaces representing the tissue block and the tumor 
were generated with the Digital Data Viewer software using a 
variant of marching cubes [8].  Visualization of the tissue 
block, the tumor, and the microspheres was performed in 
Paraview [9] (Fig. 2).   

 

 
Figure 1. Digitized liver tissue sample.  Location of microspheres is 

highlighted.  
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IV. DISTANCE CALCULATION  

For each microsphere location query point q we needed to 
classify whether the point is inside or outside the volume 
enclosed by the tumor surface S, and we needed to also 
determine the distance between q and S.  We employed the 
point classification algorithm outlined by Khamayseh and 
Kuprat [4], since it automatically provides the distance to the 
surface as a by-product.  In [4, Algorithm 2.1], it is assumed 
the surface is composed of a union of smooth surface patches 
(e.g. triangles) and the surface does not intersect itself.  It is 
allowed that the surfaces form two or more connected 
components (and hence enclose two or more volumes).  In 
the case of disconnected components, the algorithm will 
return the correct inside/outside status and the distance to the 
nearest surface component.  Further, it is assumed that the 
surface S is oriented and an outwards normal n(p) is defined 
for each point p in the interior of each surface patch.  For the 
case of a piecewise linear surface, n(p) is simply the 
outwards normal of the unique triangle that p belongs to.   

The idea of [4, Algorithm 2.1] is a nearest point p on S to 
the query point q is rapidly found by some algorithm and 
then we check the dot product (q - p)

.
n(p). If the dot product 

is positive, q is outside S; if it is negative, q is inside S. 
Although this is clearly true for a smooth surface, for a 
nonsmooth surface (such as a piecewise linear surface), a 
closest point p on S could be on the shared boundary of two 
or more patches and thus not possess a classical outwards 
normal n(p).  In [4] the problem is resolved by defining a 
“synthetic normal” that is a weighted linear combination of 
incident patch normals, where the weight for each patch is 
the angle that the patch subtends at p.  It is rigorously shown 
that using the angle-weighted synthetic normal, the “dot 
product” criterion always provides the correct result. That is 
(q - p)

.
n(p) > 0 if and only if q is outside S, even if n(p) does 

not classically exist, but is a synthetic, angle-weighted 
normal. 

Following [4] we employ an skd-tree to rapidly determine 
a closest point p on S to each query point q.  The skd-tree is a 
bounding volume hierarchy (BVH) which consists of a 
balanced binary tree where each leaf node corresponds to a 
patch (triangle) of S along with a minimal bounding box 
oriented with the Cartesian axes.  Each non-leaf node consists 
of a minimal Cartesian bounding box containing the 
bounding boxes of the two children of the node.  
Consequently, the root node of the tree is the minimal 

Cartesian bounding box for the whole geometry.  The 
construction of the skd-tree takes O(NlogN) time, where N is 
the number of patches (triangles).  In order to utilize the tree 
to find the closest point p on S to q, the root node is initially 
placed on a stack.  Also a conservative estimate d of the 
maximum possible distance from q to S is defined as the 
point on the bounding box of the root node that is furthest 
from q.  The algorithm proceeds by popping the node on top 
of the stack and (assuming it is not a leaf node) placing the 
children of the node back on the stack if it is possible that 
they possess a point that is within a distance d from q.  If the 
popped node is a leaf, and the bounding box of the patch 
contains a point within a distance d from q, it is placed in a 
‘candidates list’ of  patches that possibly contain a closest 
point p.  As the algorithm proceeds, the bounding boxes of 
popped nodes become smaller and the conservative estimate 
d can be rigorously reduced, leading to a significant reduction 
in the number of nodes considered.   Finally, when the stack 
is empty, the ‘candidates list’ of patches that possibly contain 
a closest point is examined one by one and a closest point p 
is obtained from all the candidate patches.  In the case that 
the patches are triangles, this means considering the 
possibilities that a potential closest point p is in the interior of 
the triangle, somewhere on the three edges of the triangle, or 
is one of the three vertices of the triangle.  These cases are 
rapidly tested in O(1) time. 

Due to the rigorous nature of the algorithm, the closest 
point p found in the list of candidate patches is indeed a 
closest point on S to q as required and the ‘dot product’ test 
that is performed using the query point q, the closest point p, 
and the ‘synthetic normal’ n(p) at p will be rigorously 
correct.  Moreover, usage of the skd-tree will in the best case 
cut the time to process a query point q to O(logN), where N 
is the number of patches (triangles) in S.   

Prior to distance calculation, volume conserving 
smoothing [10] was applied to the tumor surface consisting 
of 700,000 triangular facets. We found that applying the 
point classification algorithm (including time to build an skd-
tree for the tumor surface) for all 12707 query points q 
required approximately 15 seconds using a single Intel Xeon 
processor. We found that 1817 microspheres were within the 
tumor.  A histogram representing the distribution of distances 
from microspheres to the tumor is shown in Fig. 3. The 
microspheres color-coded by distance and their relationship 
to the tumor surface are illustrated in Fig. 4. 

Figure 2. Reconstruction of the liver tissue block in 3D.  Location of 

the HCC tumor is indicated by the red surface, while the tissue block is 

depicted in grey. Microsphere locations are indicated in green.  

Figure 3. Distribution of distances between microspheres and tumor 

surfaces as represented by a histogram.  
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V. CONCLUSION 

We have detailed here an approach for assessing the 

location of microspheres relative to a liver tumor via the 

process of serial sectioning, 3D reconstruction, and the 

calculation of distance between points and surface depicting 

an arbitrary volume or volumes. Due to the limited size of 

the tissue sample with respect to the tumor size, results are 

not intended as an assessment of microsphere performance, 

but instead as a demonstration of the method. Future 

directions include elastic registration at higher image 

resolutions, refinement of approaches for detecting 

microspheres, investigating the relationship of between 

microsphere location and blood vessels, calculating the 

radiation profile of the microspheres upon the tumor, and the 

examination of microsphere performance with different 

tumor types. 
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Figure 4. Relationship between the deposited microspheres and the 
boundary of the tumor. Two perspective views are shown (top: above 

the tissue block; bottom: from side of tissue block). The tumor surface 

is shown in grey.  Microspheres are color-coded based on distance to 
the tumor surface (dark blue for far from tumor; light blue for near 

tumor; green for at tumor boundary; yellow for inside tumor near tumor 

surface; red for deep inside tumor). 
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