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Abstract— One treatment increasing in use for solid tumors
in the liver is radioembolization via the delivery of °"Y
microspheres to the vascular bed within or near the location of
the tumor. It is desirable as part of the treatment for the
microspheres to embed preferentially in or near the tumor.
This work details an approach for analyzing the deposition of
microspheres with respect to the location of the tumor. The
approach used is based upon thin-slice serial sectioning of the
tissue sample, followed by high resolution imaging,
microsphere detection, and 3-D reconstruction of the tumor
surface. Distance from the microspheres to the tumor was
calculated using a fast deterministic point inclusion method.

1. INTRODUCTION

Solid tumors in the liver, both primary and metastatic, are
common and challenging for an oncologist. Despite various
treatment options, mortality rates remain high, with these
tumors accounting as the main cause of death for
approximately 80,000 patients in the United States each year
[1]. Hepatocellular carcinoma (HCC) is increasingly
recognized and incidence is growing. °Y microsphere
therapy delivers high numbers of microspheres with resulting
high total doses of radiation. *°Y is a beta emitting isotope
that delivers high doses of radiation up to 3mm from the
sphere, with a half life of 64 hours [2,3].

Understanding the distribution of microspheres relative to
the tumor site is important to determining the amount of
radiation delivered to the tumors and nearby tissues. Here we
demonstrate a new approach developed for measuring
distance between microspheres and a tumor. The steps
involved are: tissue acquisition; tissue embedding and serial
sectioning; digitizing tissue at high resolution; labeling the
images to mark microsphere locations and tumor regions;
registration of the 2D image series to remove distortions
caused by the sectioning process and to create a coherent 3D
tumor volume; and calculation of distances between
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microspheres and tumors using the Khamayseh-Kuprat
method [4].

II. DATA ACQUISITION

A. Tissue Sample

A tissue sample was acquired from a 70 year old man
with unresectable multifocal HCC who had been treated with
microsphere therapy. The microspheres delivered were
SirSpheres (Sirtex Medical Inc) with a mean diameter of
32um (+/- 8um) and containing *’Y. A ~ 2cm x 2cm x lem
block subsection of the tissue sample was then embedded in
paraffin wax.

B. Tissue Sectioning and Imaging

The embedded block of tissue was serial sliced into 8um
thick sections, with 57 of the sections each spaced 200pum
microns apart preserved on slides ((HistoTox Labs, Inc.,
Massachusetts). Slides were stained with Hematoxylin &
Eosin (H&E) to highlight general histological features.

Each slide was digitized using a Hamamatsu
NanoZoomer imaged at 20x scan mode (Fig. 1). This created
an image at 0.460pum resolution corresponding to each slide.
Total size per image was approximately 80,000 x 50,000
pixels (~4 gigapixel image). Images were initially stored in
24-bit RGB ndpi format, and then converted to Bitmap
format for accessibility. Bitmap images were then
downsampled to Y scale and stored as portable network
graphic (png) images for analysis.

III. 3D RECONSTRUCTION

A. Labeling Tumor and Microspheres

An image mask representing the location of the tumor in
the liver tissue was created for each tissue image. Using
Photoshop, this mask was manually drawn as a green region
on the tissue image by a liver pathologist. Python and Python
Imaging Library were used to generate a binary mask image
representing the tumor from the tumor-marked image.

A list of microsphere coordinates was created for each
tissue image. A methodical visual search of the image was
performed, with each detected microsphere manually marked
in Photoshop with a single green pixel. Once all
microspheres in an image were marked, that image was
processed using a Python script to create a text file listing of
microsphere coordinates. Microsphere coordinates were
rapidly validated by inspecting a microsphere summary
image. This summary image was constructed by a Python
script that automatically cropped the tissue image around
each microsphere coordinate, and then tiled the resulting
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cropped images into a single image. Using this approach, we
detected and verified 12,707 microspheres.

Figure 1. Digitized liver tissue sample. Location of microspheres is
highlighted.

B. Pre-alignment Processing

Misalignments between adjacent images prevent direct
2D-to-3D data conversion and require appropriate image-to-
image registration to restore the digitized series of 2D images
representing the tissue sample to a 3D state. During serial
sectioning, each tissue slice was placed on a separate slide,
causing misalignment between imaged sections tissues.
Addressing this type of misalignment requires rigid
registration (translation and rotation) of images. In addition,
generalized and localized tissue expansion was introduced as
part of the standard paraffin sectioning histological
technique. Removing these distortions requires unique 2D

elastic transformation determined for and applied to each
image.

To prepare the images for registration, images were first
downsampled to 1/16" original scale. Next, images were
converted to 8-bit grayscale by subtracting the green color
channel from the blue color channel followed by uniform
zero-padding (5632x5632). Then, the padded grayscale
images were downsampled to 1/128" original scale.

C. Rigid Registration

During rigid alignment, the translation and rotation
necessary to align the tissue section images was calculated
[5]. This calculation was performed using an iterative multi-
scale pyramid approach, with resolution increasing each step
in order to further refine the optimal translation and rotation
to align images [6]. The difference between two images was
based upon the sum squared difference of overlapping pixel
intensities. The difference score for an image to be translated
was averaged over up to three prior rigid-aligned images in
the image series (as available). Once the appropriate image-
to-image rotations and translations were calculated, they were
applied to the tissue images, the tumor masks, and the
microsphere coordinates. This brought all three sets of data
into 3D rigid registered co-alignment, thus addressing the
registration issue caused by placing the tissue sections on
different slides.

D. Elastic Registration

To address paraffin-related image distortions, we
calculated and applied elastic registration to ensure optimum
continuity of the image sequence. To handle deformation
outliers, we calculated and averaged four warps for each
image—to the two images preceding and the two images
following the image in the series (when available). Warps
were calculated using the bUnwarp] plug-in [7] for the
imaging software package ImageJ. Parameters applied were
“Coarse” initial warp and “Fine” final warp. The bUnwarpJ
image registration algorithm represents the images and
deformations as cubic B-splines, and then utilizes an energy
function summing the dissimilarity in both directions
between the source image and target image. Optimization is
by Levenberg-Marquardt. After averaging the four warps, a
single transformation per image was saved as a text file for
later application.

The calculated warp definitions were then converted via a
bUnwarp] macro from elastic warp definitions—which
consider translations of the vertices of an affine grid
overlay—to raw transformations—which contain the
translational information for each pixel. Another bUnwarpl
macro applies the raw definitions to the liver tissue images
and the tumor masks. The process of calculating and
applying warps was automated as a Python script.

Surfaces representing the tissue block and the tumor
were generated with the Digital Data Viewer software using a
variant of marching cubes [8]. Visualization of the tissue
block, the tumor, and the microspheres was performed in
Paraview [9] (Fig. 2).
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Figure 2. Reconstruction of the liver tissue block in 3D. Location of
the HCC tumor is indicated by the red surface, while the tissue block is
depicted in grey. Microsphere locations are indicated in green.

IV. DISTANCE CALCULATION

For each microsphere location query point q we needed to
classify whether the point is inside or outside the volume
enclosed by the tumor surface S, and we needed to also
determine the distance between q and S. We employed the
point classification algorithm outlined by Khamayseh and
Kuprat [4], since it automatically provides the distance to the
surface as a by-product. In [4, Algorithm 2.1], it is assumed
the surface is composed of a union of smooth surface patches
(e.g. triangles) and the surface does not intersect itself. It is
allowed that the surfaces form two or more connected
components (and hence enclose two or more volumes). In
the case of disconnected components, the algorithm will
return the correct inside/outside status and the distance to the
nearest surface component. Further, it is assumed that the
surface S is oriented and an outwards normal n(p) is defined
for each point p in the interior of each surface patch. For the
case of a piecewise linear surface, n(p) is simply the
outwards normal of the unique triangle that p belongs to.

The idea of [4, Algorithm 2.1] is a nearest point p on S to
the query point q is rapidly found by some algorithm and
then we check the dot product (q - p)n(p). If the dot product
is positive, q is outside S; if it is negative, q is inside S.
Although this is clearly true for a smooth surface, for a
nonsmooth surface (such as a piecewise linear surface), a
closest point p on S could be on the shared boundary of two
or more patches and thus not possess a classical outwards
normal n(p). In [4] the problem is resolved by defining a
“synthetic normal” that is a weighted linear combination of
incident patch normals, where the weight for each patch is
the angle that the patch subtends at p. It is rigorously shown
that using the angle-weighted synthetic normal, the “dot
product” criterion always provides the correct result. That is
(q - p)yn(p) > 0 if and only if q is outside S, even if n(p) does
not classically exist, but is a synthetic, angle-weighted
normal.

Following [4] we employ an skd-tree to rapidly determine
a closest point p on S to each query point q. The skd-tree is a
bounding volume hierarchy (BVH) which consists of a
balanced binary tree where each leaf node corresponds to a
patch (triangle) of S along with a minimal bounding box
oriented with the Cartesian axes. Each non-leaf node consists
of a minimal Cartesian bounding box containing the
bounding boxes of the two children of the node.
Consequently, the root node of the tree is the minimal

Cartesian bounding box for the whole geometry. The
construction of the skd-tree takes O(NlogN) time, where N is
the number of patches (triangles). In order to utilize the tree
to find the closest point p on S to q, the root node is initially
placed on a stack. Also a conservative estimate d of the
maximum possible distance from q to S is defined as the
point on the bounding box of the root node that is furthest
from q. The algorithm proceeds by popping the node on top
of the stack and (assuming it is not a leaf node) placing the
children of the node back on the stack if it is possible that
they possess a point that is within a distance d from q. If the
popped node is a leaf, and the bounding box of the patch
contains a point within a distance d from q, it is placed in a
‘candidates list” of patches that possibly contain a closest
point p. As the algorithm proceeds, the bounding boxes of
popped nodes become smaller and the conservative estimate
d can be rigorously reduced, leading to a significant reduction
in the number of nodes considered. Finally, when the stack
is empty, the ‘candidates list’ of patches that possibly contain
a closest point is examined one by one and a closest point p
is obtained from all the candidate patches. In the case that
the patches are triangles, this means considering the
possibilities that a potential closest point p is in the interior of
the triangle, somewhere on the three edges of the triangle, or
is one of the three vertices of the triangle. These cases are
rapidly tested in O(1) time.

Due to the rigorous nature of the algorithm, the closest
point p found in the list of candidate patches is indeed a
closest point on S to q as required and the ‘dot product’ test
that is performed using the query point q, the closest point p,
and the ‘synthetic normal’ n(p) at p will be rigorously
correct. Moreover, usage of the skd-tree will in the best case
cut the time to process a query point q to O(logN), where N
is the number of patches (triangles) in S.

Prior to distance calculation, volume conserving
smoothing [10] was applied to the tumor surface consisting
of 700,000 triangular facets. We found that applying the
point classification algorithm (including time to build an skd-
tree for the tumor surface) for all 12707 query points q
required approximately 15 seconds using a single Intel Xeon
processor. We found that 1817 microspheres were within the
tumor. A histogram representing the distribution of distances
from microspheres to the tumor is shown in Fig. 3. The
microspheres color-coded by distance and their relationship
to the tumor surface are illustrated in Fig. 4.
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Figure 3. Distribution of distances between microspheres and tumor
surfaces as represented by a histogram.
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V. CONCLUSION

We have detailed here an approach for assessing the
location of microspheres relative to a liver tumor via the
process of serial sectioning, 3D reconstruction, and the
calculation of distance between points and surface depicting
an arbitrary volume or volumes. Due to the limited size of
the tissue sample with respect to the tumor size, results are
not intended as an assessment of microsphere performance,
but instead as a demonstration of the method. Future
directions include elastic registration at higher image
resolutions, refinement of approaches for detecting
microspheres, investigating the relationship of between
microsphere location and blood vessels, calculating the
radiation profile of the microspheres upon the tumor, and the
examination of microsphere performance with different
tumor types.

Figure 4. Relationship between the deposited microspheres and the
boundary of the tumor. Two perspective views are shown (top: above
the tissue block; bottom: from side of tissue block). The tumor surface
is shown in grey. Microspheres are color-coded based on distance to
the tumor surface (dark blue for far from tumor; light blue for near
tumor; green for at tumor boundary; yellow for inside tumor near tumor
surface; red for deep inside tumor).
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