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Abstract— Recently, various medical imaging such as CT
and MRI imaging has been used more and more widely in
clinical and medical research. As a result, there is an increasing
interest in accurately relating information in different images
for diagnosis, treatment, and the sake of basic science. As
images are typically acquired at different times and often by
different modalities, registering (or aligning) one image with
another is not a simple task in general and it success will affect
the effectiveness and accuracy of all subsequent analysis. We
propose an efficient medical image registration method based on
sparse coding and belief propagation for medical CT imaging.
We used 3-D image blocks as features, and then we employed
sparse coding to find a set of candidate voxels. To select
optimum matches, belief propagation was subsequently applied
on these candidate voxels. The outcome of belief propagation
was interpreted as probabilistic map between candidate voxels
and source voxel. We compared with the state-of-the-art of
medical image registration, MIRT [1] and GP-Registration
algorithm [2]. Our objective results based on RMSE (Root
Mean Square Error) are smaller than those from MIRT and
GP-Registration. Our results also proved the effectiveness of
our algorithm in registering reference image to source image.

I. INTRODUCTION

Image registration is the process of overlaying two or
more images using different capturing modules into the
same coordination system [3]. Registration is required in
many clinical applications including diagnosis and surgical
planning. For example, registration techniques have been
used to align an MRI to a CT image [4]. Images of similar
or differing modalities need to be aligned as a pre-processing
step for many planning, navigation, detection , data-fusion
and visualization tasks in medical applications [5], [6].
Medical image registration still presents many challenges.
Several notable difficulties are the nonlinear transformation
between images and different appearance or resolution of
images.

Many medical image registration methods have been de-
veloped in the last decade [1]–[8], and they are divided
into two major categories such as direct and feature-based
matching. Direct methods use all available image data,
and they result in very accurate registration if initialization
points that are close to target points at the start of the
registration procedure are available [7]. For example, in [2],
a general-purpose registration algorithm for the medical im-
ages has been developed, which incorporates both geometric
and intensity transformation. The geometric model assumes
a locally affine and globally smooth transformation. The
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intensity model accounts for local differences in contrast
and brightness while imposing a global smoothness on the
overall intensity differences. Also, Myronenko and Song
used the definition of the similarity measure to propose a
registration method [1]. They derived the similarity measure
by analytically solving for the intensity correction field and
its adaptive regularization. The final measure was interpreted
as one that favors a registration with minimum compression
complexity of the residual image between the two registered
images. Feature-based registration methods, utilize invariant
features (especially those around Harris corners) to ensure
reliable matching. As a result, feature-based methods do not
depend on initialization point [9]. In [8], Glocker et al. used
different levels of smoothness in modeling medical images.
The authors then used Markov Random Fields (MRFs) to
formulate image deformations.

Many researchers incorporate smoothness (or spatial co-
herence) conditions by reformulating matching into an opti-
mization problem [10]. For example, in [11], each pixel in
the reference image is assigned a vector displacement label
indicating the position in the test image to which it spatially
corresponds. To penalize sharp changes in displacement
labels across pixels, a smoothness constraint based on the
first derivative was used. Graph cuts method was then used to
solve that labeling problem. Also in [10], belief propagation
was used to optimize cost function incorporated with smooth-
ness constraints which encourage similar displacements of
near-by pixels.

In this paper, we propose a dense, registration technique
by aligning local 3-D features of two CT images using
sparse coding and belief propagation. First, we build an
overcomplete dictionary out of all 3-D features of a reference
CT image [12]. Note that since the dictionary is constructed
by padding the features directly, no extra time is spent on
training. We then find a set of candidate voxels for each
voxel of the source image using sparse coding out of the
constructed dictionary. The match score of each candidate
voxel will be evaluated taking both local and neighboring
information into account using belief propagation [13]. The
best match will be selected as the candidate with highest
score.

The rest of the paper is organized as follows. In the next
section, we will introduce the concept of our 3D-SCoBeP
and the inference algorithm. In Section III, we will show our
simulation results, followed by a brief conclusion in Section
IV.
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II. PROPOSED METHOD

For each voxel in the source CT image, we select from
the reference CT image a set of n candidate voxels which
are likely to be most similar to the target voxel.

The proposed method described here is inspired by our
recent work, SCoBeP [14]. First, we extract the features
from the source CT image and the reference CT image.
In this paper, we focus ourselves on only using 3-D block
features even though the proposed approach can generally
be applied to other features (such as SIFT-features). Thus,
each feature considered here is essentially a vectorized 3-
D block centered around a voxel in an CT image. Second,
to match the extracted features of the reference CT image
to the corresponding extracted features of the source CT
image, we create a dictionary which contains all feature
vectors of the reference CT image and apply sparse coding
to each extracted features of the source CT image. Sparse
coding will reconstruct a 3-D source patch at voxel [i, j, k]
as a linear combination of reference 3-D patches. Note
that the obtained sparse coefficient vector should be sparse,
i.e., it should be 0 for most coefficients. To select the n
candidate voxels, we simply pick those corresponding to
n largest coefficients in the sparse coefficient vector. We
denote a set as an n × 2 matrix storing the locations of
these candidate voxels and a probability vector as the length-
n vector storing the corresponding values of the sparse
coefficient vector. Each coefficient in the probability vector
serves as a prior probability of matching the 3-D source
patch at [i, j, k] to a 3-D reference patch of the reference
CT image taking only local characteristics into accounts but
ignoring geometric characteristics of the matches. Finally, to
incorporate geometric characteristics, we model the problem
by a factor graph and apply belief propagation to update
probabilities (for more details, see [14]).

A. Implementation

As mentioned in Section I, in some applications especially
medical imaging we need dense registration so that for each
voxel of the first image (source CT image) a corresponding
match voxel will be found on the second image (reference CT
image). This section describes the implementation’s details
of our proposed registration method. The main procedure for
our proposed denoising method is summarized in Algorithm
1.

Implementation Details:
• Y = PatchExtractor

(
{Ys}

ky

s=1

)
presents a patch

extractor algorithm using {Ys}
ky

s=1 as a source CT
image, where the results is a 4-D matrix containing
the vectorized 3-D blocks. To achieve this purpose, we
consider a 3-D block of size (2a+1)×(2b+1)×(2c+1)
containing neighboring voxels around each voxel on 3-
D CT image, where a, b and c are positive integers.
For each voxel pi,j,k in the source CT image {Ys}

ky

s=1,
we vectorized the patch of pi,j,k to a feature vector
yi,j,k ∈ RS×1, where S = (2a+1)×(2b+1)×(2c+1).

Algorithm 1 3D-SCoBeP for medical image registration-
estimate version of registered CT image Z

Inputs : reference CT image {Xs}kx

s=1 ∈ RM×N×K , source
CT image {Ys}

ky

s=1 ∈ RM×N×K , reference CT image
slices number kx, source CT image slices number ky ,
candidate voxels number n

Extract 3-D dense feature and construct dictionary :
• Y = PatchExtractor

(
{Ys}

ky

s=1

)
• X = PatchExtractor

(
{Xs}kx

s=1

)
• D = MakeDic

(
X
)

Find the initial estimate of candidate voxels: For each
vector yi,j,k ∈ Y do:
(a) α̌i,j,k = FindSCV

(
D , yi,j,k

)
(b) Li,j,k = TopSCV

(
α̌i,j,k , n

)
(c) ρi,j,k = Prob

(
Li,j,k

)
Refine the candidate voxels: For each vector yi,j,k ∈ Y

do:
• ρ̌ = BP

(
L , ρ

)
Output : a probabilistic map between the reference voxels

and the source voxels

A 4-D source feature image Y ∈ RM×N×K×S is then
constructed from yi,j,k as follows

Y = {yi,j,k | 1 ≤ i ≤M, 1 ≤ j ≤ N, 1 ≤ k ≤ K} .
(II.1)

Note that, X is created in the same manner as Y but
from reference CT image {Xs}

ky

s=1 instead.
• D = MakeDic

(
X
)

creates a dictionary using the
vectors in X. To match the extracted features of the
source CT image to corresponding extracted features of
the reference CT image, a dictionary which contains
feature vectors of X is constructed. Thus, we can write
D as

D = [x1,1,1 ... x1,1,K x1,2,K ... x1,N,K ... xM,N,K ] ,
(II.2)

where xi,j,k is a feature vector in X. Note that, we
normalize dictionary D to guarantee the norm of each
feature vector to be 1.

• α̌i,j,k = FindSCV
(
D , yi,j,k

)
finds candidate match

voxels using sparse coding algorithm, where the result
is the sparse coefficient vector α̌i,j,k. Mathematically,
we try to solve the following sparse coding problem of
finding the most sparse coefficient vectors α̌i,j,k such
that

yi,j,k = Dα̌i,j,k. (II.3)

Although there are several methods to solve (II.3) [15]–
[17], in our work, we employ Subspace Pursuit (SP)
[16] because of its computational efficiency.

• Li,j,k = TopSCV
(
α̌i,j,k , n

)
simply picks up

the n largest coefficients of α̌i,j,k as n candidates.
Li,j,k as an n × 2 matrix stores the locations of these
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candidate voxels and ρi,j,k (in ρi,j,k = Prob
(
Li,j,k

)
)

as the length-n vector stores the corresponding values
of Li,j,k. Each coefficient in ρi,j,k serves as a prior
probability of matching the source patch at [i, j, k] to
a patch of xi,j,k taking only local characteristics into
accounts but ignoring geometric characteristics of the
matches.

• ρ̌ = BP
(
L , ρ

)
models the problem by a factor graph

and apply belief propagation [13] to update probabilities
ρ (for more details, see [14]). The updated probabilities
ρ̌ can be used for the registration of the source CT
image. In our case, we assign a variable node for each
voxel on the source CT image and connect each pair
of neighboring voxels with a factor node. Also, we
introduce one extra factor node to take care of the prior
knowledge obtained in the sparse coding step for each
voxel of the source CT image.

III. EXPERIMENTAL RESULTS

In this section, we present various experiments to evaluate
3D-SCoBeP. We considered the problem of registering two
slices of two CT images of one person from two different
times. To evaluate the performance of our approach, we
conducted tests on the data sets LIDC-IDRI [18] where the
size of each slice of the CT images are 512 × 512 pixels.
Through out the experiments, the following parameters were
used: the number of candidate voxels n is set to be 4,
a = b = 3 and c = 2. To synthesize the source image, we
replaced each voxel of the source CT image with the selected
candidate voxel from the reference CT image. In other words,
we map the reference CT image onto the source image using
the updated probabilities and the candidate voxels location.
In our work, we select the most probable voxel after the BP
step as the best match voxel. We assume that our registration
method successfully finds a match for an input voxel if the
most probable candidate has belief larger than a threshold
θ = 0.25. Otherwise, we assume no best match is found.

We now proceed to compare 3D-SCoBeP with other
approaches; Figs. III.1 and III.2 show the output of our pro-
posed method compared to two the state-of-the-art methods;
the MIRT [1] and GP-Registration [2]. Figs. III.1(a) and
III.2(a) corresponds the reference CT image and Figs. III.1(b)
and III.2(b) to the source CT image. Figs. III.1(c)-(e) and
III.2(c)-(e) show results using MIRT [1], GP-Registration [2]
and our proposed method. The warped images using MIRT
and GP-Registration with highlighted artifacts are shown in
(h) and (i), respectively. The estimated images generated
from 3D-SCoBeP with highlighted areas are shown in (j).

To quantify our registration performance, we used the root
mean square error (RMSE) measure between the true and
estimated transformations:

εRMSE =
√

(1/N)
∑
‖τ − τ̂‖2, (III.1)

where N is the number of voxels in the reference and τ
and τ̂ are the source image and the estimated transformation
respectively. However, the root mean square error (RMSE)

can not qualify the accuracy of the registration methods
perfectly. It can only give a rough estimation of similarity
between estimated image and source image. In the term of
RMSE, we compare the source image with the output of 3D-
SCoBeP, MIRT and GP-Registration and the results is shown
under (c), (d) and (e) of Figs. III.1 and III.2.

IV. CONCLUSIONS

In conclusion, we have proposed in this paper an ef-
ficient registration method based on a sparse coding and
belief propagation. Our technique performs registration by
first running sparse coding over an overcomplete dictionary
constructed from the reference image to gather possible
match candidates. Belief propagation is then applied to
eliminate bad candidates and to select optimum matches. The
experimental result illustrates that our proposed algorithm
compares favorably with the high accuracy MIRT method
by Myronenko and Song [1] and the state-of-the-art GP-
Registration by Periaswamy and Farid [2].
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Fig. III.1: Synthetic experiment 1. We register the reference image (a) onto the source image (b) (RMSE in brackets).
(a) Source image; (b) Reference image; (c) MIRT [1] [RMSE: 24.3060]; (d) GP-Registration [2] [RMSE: 28.7820]; (e)
3D-SCoBeP [RMSE: 21.9342]; (f) Source image (Zoom in); (g) Reference image (Zoom in); (h) MIRT [1] (zoom in); (i)
GP-Registration [2] (zoom in); (j) 3D-SCoBeP (zoom in).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. III.2: Synthetic experiment 2. We register the reference image (a) onto the source image (b) (RMSE in brackets). (a)
Source image; (b) Reference image; (c) MIRT [1] [RMSE: 7.7130]; (d) GP-Registration [2] [RMSE: 7.3828]; (e) 3D-SCoBeP
[RMSE: 4.2334]; (f) Source image (Zoom in); (g) Reference image (Zoom in); (h) MIRT [1] (zoom in); (i) GP-Registration
[2] (zoom in); (j) 3D-SCoBeP (zoom in).
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