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Abstract— Differentiable echogeneities exhibited by living 

and dead cells enables the monitoring of cell death response via 

quantitative ultrasound techniques at high-frequencies and 

recently at clinical range frequencies. Such capability can be 

potentially employed to provide rapid and quantitative 

functional information in real time, and at the patient bedside 

for evaluating therapy response early following treatment. This 

paper summarizes backgrounds on quantitative ultrasound 

visualization of cell death and highlights its potential 

capabilities for monitoring cancer treatment response, where 

favorable results have been reported, according to a recent pilot 

clinical study. 

I. INTRODUCTION 

Cell death introduces structural changes in the cell’s 

nucleus including nuclear condensation and fragmentation.  

We have previously demonstrated that nuclear structure is 

closely linked to ultrasound backscatter properties of cells 

and tissues for high frequency ultrasound. The changes in 

nuclear structure associated with cell death hence results in 

differentiable echogenicities of living cells, necrotic cells 

and cells dying of programmed cell death or apoptosis. This 

has been confirmed through several studies conducted, in 

vitro, in situ, ex vivo, and in vivo [1–10]. 

Ultrasound (US) radiofrequency (RF) signals carry 

information about tissue echogenicity but until recently have 

not been readily accessible on commercial ultrasound 

systems. Since a large number of instrument parameters are 

involved in a typical ultrasound imaging and data acquisition 
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session, it is difficult to establish a reasonable comparison 

between imaging data acquired by different standard 

ultrasound machines, or even by the same machine when 

different settings are used. Quantitative ultrasound methods 

have been proposed to address this shortcoming. 

Quantitative ultrasound analyzes the acquired raw-data 

before it is envelope detected, log-amplified and processed 

to form B-mode ultrasound image and employs calibration 

techniques to provide parameter estimates which are 

predominantly independent of instrument settings. Such 

estimates are frequently based on backscatter analysis of RF 

echoes and include the integrated backscatter, RF envelope 

statistics, frequency dependence of the backscatter, 

ultrasound tissue attenuation, and in a broader sense can 

include elastic properties of tissues, propagation of shear 

waves in tissues, and other signal classification techniques 

such as entropy metrics of RF ultrasonic backscatter [11], 

[12]. Different subsets of these parameters have been utilized 

in a number of clinically related applications, and 

particularly for tissue classification purposes, such as 

differentiating benign versus malignant disease [13–20]. 

II. QUANTITATIVE ULTRASOUND AND CELL DEATH 

The application of quantitative ultrasound techniques for 

the detection of cell death is a relatively new development 

[21], [22]. High-frequency (20-60 MHz) quantitative 

ultrasound parameters have been found in preclinical animal 

tumour experiments to demonstrate reproducible and 

statistically significant features in the ultrasound signals that 

are associated with cell death. The methods are robust and 

can be applied to detecting and determining the extent of cell 

death from different anticancer therapies [1], [5], [10]. This 

is because high-frequency ultrasound is particularly sensitive 

to the structural changes that cells and tissues undergo during 

treatment response [3], [7], [9]. Such changes including 

nuclear condensation and fragmentation frequently result in 

substantial increases in tissue echogeneity, and consequently 

cause a large boost in backscatter signal. Other factors such 

as cell shape may also contribute, but the nuclear changes 

associated with cell death have been demonstrated to be 

responsible for  the  contrast  in   quantitative    ultrasound 
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Figure 1: The application of conventional frequency quantitative US for monitoring tumour cell death response. (a), (b): Representative parametric 0-MHz 

intercept images of a large tumour during neo-adjuvant chemotherapy for a (a): clinically responding patient, (b): clinically non-responding patient. (c), (d): 

Quantitative 0-MHz intercept data averaged over the tumour area for the (c): clinically responding patient, (d): clinically non-responding patient. Scans 1, 2, 

3, and 4 are pre-treatment, week 1, week 4, and week 8 scans, respectively. At scan 3 (4 weeks) of the clinically responding patient an increase in intercept 

is apparent compared to scan 1 (pre-treatment). In the case of the clinically non-responding patient there is no striking change in the 0-Mhz intercept during 

the majority of therapy compared to the case of clinically responding patient. (e): The whole mount pathology corresponding to the clinically responding 

patient indicates a small residual mass in the mastectomy specimen (10 cm wide). (f): The whole mount pathology corresponding to the clinically non-

responding patient indicates a large compact residual mass in the mastectomy specimen (8 cm wide).
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parameters. However, whereas high-frequency ultrasound 

provides better lateral and axial resolutions (tens of 

microns), its clinical application is restricted due to a limited 

depth of ultrasound penetration [23]. Conventional (low) to 

mid-range ultrasound frequencies (1-20 MHz) have much 

deeper penetration and are hence broadly used in medicine, 

and very recently are being used to monitor cell death 

response to cancer treatment with quantitative ultrasound 

methods, as described in section III. 

Whereas the detection of tissue changes related to necrosis 

using ultrasound methods were measured nearly fifty years 

ago, it is only very recently that quantitative methods have 

been applied using clinical US frequencies. In a set of recent 

studies, conventional ultrasound (3 to 10 MHz, -6 dB 

bandwidth) was used for real time detection of cell death 

using well controlled AML cell culture experiments. Results 

demonstrated an ability to detect as little as 10% apoptotic 

cells using ultrasound frequencies in the 10MHz range, 

paralleling changes observed using high-frequency 

ultrasound [1], [22]. Time-course experiments indicate that 

changes are detectable as early as 6 hours after exposure to 

chemotherapy drugs. These findings have been confirmed in 

vivo using prostate cancer PC3 tumour xenografts in mice 

[22], [24]. Here, large macroscopic areas of cell death were 

induced by novel anti-angiogenic agents in combination with 

radiation. One may argue that measurable backscatter 

changes from micron-sized particles are not expected at low-

frequencies, mainly due to loss of scattering strength of small 

scattering structures. However, in the low-to-mid- frequency 

range, bulk changes in tissue are mostly related to ensembles 

of cells and nuclei smaller than the wavelength of the 

ultrasound being used. Such ensembles influence acoustic 

properties and thus ultrasound backscatter. The potential 

scatterers are closer in size to those that predominate in the 

Rayleigh scattering regime, as they are about 10 times 

smaller than the interrogating wavelength. In addition, when 

imaging cell samples, even at these low frequencies, a 

speckle pattern is still formed indicating that many sub-

resolution scatterers contribute to the detected signals. 

Results based on experiments using over 50 animals assessed 

with high-frequency and conventional frequency ultrasound 

suggests that the monitoring of treatment efficacy is possible 

using low-frequency ultrasound. 

III. EMERGING CLINICAL APPLICATIONS 

In a pilot clinical study, quantitative ultrasound at 

conventional frequencies has been applied for evaluation of 

tumour cell death response in locally advanced breast cancer 

patients receiving neo-adjuvant chemotherapy [25]. 

Conventional 7 to 10 MHz US data were acquired prior to 

treatment onset and at 4 times during treatment. In each 

session, several scan planes with the size of 6 by 4 cm were 

acquired from the same nominal regions. The RF signal’s 

power spectrums were normalized, as before [1], [4], [7], at 

each region of interest (ROI) using a reference’s power 

spectrum obtained from an agar-embedded glass-bead 

phantom model, at the same ROI position. The results (n=10 

patients) demonstrated a close association between 

quantitative ultrasound changes after one to two cycles of 

chemotherapy (weeks) and clinical response in the tumour 

many months later. More specifically, patients who had a 

significant clinical response demonstrated changes in 

quantitative ultrasound parameters consistent with cell death, 

while women with no changes in quantitative ultrasound 

parameters demonstrated no ultimate clinical response 

(Figure 1). The promising results emerging from this study 

pave the way for establishing protocols for the clinical 

applications of the conventional frequency quantitative 

ultrasound techniques in therapy response monitoring. As 

such, quantitative ultrasound at conventional frequencies is 

expected to provide rapid and quantitative functional 

information in real time for evaluating responses to a specific 

therapy in the near future. 
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