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Abstract—The detection of metastases in freshly-excised
lymph nodes from cancer patients during lymphadenectomy is
critically important for cancer staging, treatment, and optimal
patient management. Currently, conventional histologic meth-
ods suffer a high rate of false-negative determinations because
pathologists cannot evaluate each excised lymph nodes in its
entirety. Therefore, lymph nodes are undersampled and and
small but clinically relevant metastatic regions can be missed.
In this study, quantitative ultrasound (QUS) methods using
high-frequency transducers (i.e., > 20 MHz) were developed
and evaluated for their ability to detect and guide pathologists
towards suspicious regions in lymph nodes. A custom labo-
ratory scanning system was used to acquire radio-frequency
(RF) data in 3D from excised lymph nodes using a 26-MHz
center-frequency transducer. Overlapping 1-mm cylindrical
regions-of-interest (ROIs) of the RF data were processed
to yield 13 QUS estimates quantifying tissue microstructure
and organization. These QUS methods were applied to more
than 260 nodes from more than 160 colorectal-, gastric-,
and breast-cancer patients. Cancer-detection performance was
assessed for individual estimates and linear combinations of
estimates. ROC results demonstrated excellent classification.
For colorectal- and gastric-cancer nodes, the areas under the
ROC curves (AUCs) were greater than 0.95. Slightly poorer
results (AUC=0.85) were obtained for breast-cancer nodes.
Images based on QUS parameters also permitted localization
of cancer foci in some micrometastatic cases.

I. INTRODUCTION

Reliable ultrasound tissue-characterization methods have
been sought after for more than three decades. Several
tissue properties have been estimated using raw ultrasound
data and investigated as tools to diagnose disease states
[1], to monitor tissue response to therapies [2], or more
fundamentally, to better understand the intricate relationship
between ultrasound scattering and tissue properties [3].

High-frequency ultrasound (HFU, >20 MHz) can be used
to quantify tissue properties at the microscopic level with
spatial resolutions below 100 µm. In this study, HFU was
used to develop novel three-dimensional (3D) quantitative
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ultrasound (QUS) methods to detect and reliably localize
metastatic regions in freshly-excised lymph nodes from
cancer patients undergoing a lymphadenectomy. Our group
previously described the basis of our innovative 3D QUS
methods to characterize lymph-node tissues from cancer
patients [4]. Our methods demonstrated a potential to reli-
ably determine the presence or absence of metastatic cancer
in lymph nodes. Accurate cancer detection is critical for
staging disease and planning its treatment. Since our initial
successful QUS studies [4], [5], we have improved our
methods by adding five novel QUS parameters, and these
methods were applied to a larger number of lymph nodes
from colorectal-, gastric- and breast-cancer patients.

In the present study, 13 QUS parameters were estimated
and used for classification. Four QUS estimates were ob-
tained by quantifying spectrum deduced from the backscat-
tered radio-frequency (RF) echo signals [3], [4], [6] and four
QUS estimates were obtained by quantifying the statistics of
the envelope-detected echo signals. Specifically, these four
envelope parameters were obtained by using the Nakagami
and the more-complex homodyned-K (HK) distributions [5].
Finally, the remaining five QUS estimates are also envelope-
based but do not rely on a specific model; instead they el-
egantly quantify the difference between the actual envelope
statistics and Rayleigh statistics. The envelope-based QUS
estimates are derived from fit parameters associated with the
envelope; they hypothetically provide an additional means
of distinguishing among tissue types, and they complement
the spectral-based QUS estimates [7].

Finally, QUS estimates were used to generate 3D cancer
likelihood maps and to visualize the entire lymph node using
an interactive 3D display. Such a display could efficiently
guide pathologists towards suspicious regions in excised
lymph nodes.

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

1114978-1-4577-1787-1/12/$26.00 ©2012 IEEE



II. METHODS

A. Surgery and ultrasound data acquisition

Patients with histologically proven colorectal, stomach,
or breast cancers were recruited at the Kuakini Medical
Center (KMC) in Honolulu, HI. Lymphadenectomy was
performed, and several lymph nodes were isolated and
sent to the pathology laboratory at KMC. The lymph
nodes were grossly prepared for histology and immersed
in an isotonic saline (0.9% sodium chloride) bath at room
temperature. Individual lymph nodes were scanned in 3D
using a single-element spherically-focused transducer (PI30,
Olympus NDT, Waltham, MA) having an aperture of 6.1
mm and a focal length of 12.2 mm. The transducer had
a center frequency of 25.6 MHz and a -6 dB fractional
bandwidth of 67%. The ultrasound RF echo signals were
digitized with a sampling frequency of 400 MHz and 8-bit
accuracy. Adjacent planes and RF lines were 25 µm apart to
cover the entire node in 3D with sufficient spatial sampling.

B. Histology

Following 3D ultrasound scanning, each lymph node
underwent non-standard histology processing: the node was
inked to recover orientation, cut in half, embedded in a
cassette, fixed, sectioned at 65 µm intervals, stained with
H&E, and digital images of the slides were obtained with
a high-quality high-throughput slide scanner (NanoZoomer,
Hamamatsu, Japan) with a pixel resolution of 0.46 µm
or with a digital camera (FujiFilm FinePix S9100; Fuji
Photo Film, Tokyo, Japan) equipped with Hoya 12 and
14 close-up lenses (Hoya Corp., Tokyo, Japan). Metastatic
regions were highlighted in each digital image using custom
software. Following digitization, a 3D histology volume was
reconstructed from the adjacent images and co-registered
with the 3D ultrasound data using the visible ink on the
edges of the tissue.

C. QUS estimation

The first processing step was the 3D segmentation of the
ultrasound data. Specifically, a semiautomatic 3D segmenta-
tion algorithm was implemented to separate lymph-node tis-
sue from surrounding fibroadipose tissue and saline [8]. The
segmentation algorithm was based on the watershed trans-
form which yielded many regions within the lymph node.
Each region was classified as fibroadipose tissue, saline, or
nodal tissue by computing several parameters within each re-
gion while taking into account the ultrasound diffraction and
attenuation properties, and by using a maximum-likelihood
classifier [8]. When necessary, the 3D segmentation was
manually corrected using a 3D visualization software that
permitted changing the class of each region. Following 3D
segmentation, overlapping 3D cylindrical regions-of-interest
(ROIs) having a diameter of 1 mm and a length (i.e.,
measured along the axis of the transducer) of 1 mm [4]
were used to yield 13 QUS estimates. These estimates were
computed only for ROIs composed entirely of lymph-node

tissue as determined by the segmentation algorithm. The
methods to estimate the four QUS parameters based on the
backscattered signal spectrum and the four QUS parameters
based on the Nakagami and homodyned-K distribution for
each 3D ROI have been described previously and have not
been modified [4], [5].

Five additional envelope-based QUS parameters were
computed using a modified quantile-quantile (MQQ) prob-
ability plot. Conventional QQ plots are typically used to
visually compare two probability density functions (PDFs).
In this study, the MQQ plot was used to compare and
quantify the estimated PDF of each ROI to that of a Rayleigh
PDF. In particular, the MQQ plot was designed such that the
MQQ plot of a Rayleigh-distributed ROI would exactly be
a straight line with a slope of two. The MQQ plots were
parameterized and yielded five QUS estimates quantifying
the difference between the ROI PDF and the Rayleigh PDF.
A Rayleigh PDF is expected for fully developed speckle in a
random medium with randomly-located scatterers [7]. The
MQQ-based estimation algorithm was previously used to
quantify liver fibrosis [9]. The MQQ-based QUS estimates
can be related to tissue microstructure because of their
relationship to the well-understood Rayleigh distribution.

D. Classification

A set of uniform lymph nodes (i.e., either entirely devoid
of metastatic tissue or completely filled by metastatic tissue)
was used to train the classifier. Specifically, the average
values of all 13 QUS parameters for each lymph node of
the training set were computed, and a linear-discriminant
function, D, was computed.

D =
13

∑
i=1

αiEi =
−→α ·−→E , (1)

where −→α is the vector of linear coefficients and
−→
E is

the vector formed by the 13 QUS estimates. The linear
coefficient vector was obtained using the Fisher linear
discriminant approach, which maximizes the ratio of the
interclass variance to intraclass variance:

−→α = (Σ1 +Σ0)
−1(−→µ 1 −−→µ 0), (2)

where Σ1 and Σ0 are the covariance matrices of
−→
E for

cancerous and non-cancerous lymph nodes, and −→µ 1 and −→µ 0
are the mean of

−→
E for cancerous and non-cancerous lymph

nodes, respectively. To limit the risk of over classification,
a step-wise approach was used to force some of the coordi-
nates of α to be zero if they did not significantly contribute
to enhancing the classification.

Classification performance was evaluated by estimating
ROC curves and computing the area under the curve (AUC)
for each individual QUS estimate and for the optimal
linear combination obtained using the step-wise linear-
discriminant approach.
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Finally, D was used to compute a posteriori cancer
likelihood for each ROI of each lymph node:

P(d) =
e−(d−D1)

2/σ2
D

e−(d−D1)
2/σ2

D + e−(d−D0)
2/σ2

D
, (3)

where D1 and D0 are the mean of the discriminant score for
cancerous and non-cancerous nodes, σD is the total variance
over the training set, and d is the discriminant score for the
ROI for which we are computing the cancer likelihood.

III. RESULTS

A. Three-dimensional QUS parametric images

Parametric images depicting effective scatterer sizes are
shown in Figs. 1 and 2. Three panels in Fig. 1 show the
ultrasound data while the fourth displays the co-registered
histology. On the ultrasound panels, segmentation results
are shown by the green and red outlines that demarcate the
fibroadipose and nodal tissue, respectively. Additionally, the
estimated effective scatterer size for each ROI is color-coded
and overlaid on the conventional B-mode data. (Figure 2
displays only one cross-sectional ultrasound image and the
corresponding histology image.)

The lymph node shown in Fig. 1 was obtained from
a colon-cancer patient and did not contain any metastatic
foci. The lymph node shown in Fig. 2 was obtained from a
different colon-cancer patient and was entirely metastatic. To
permit comparison, the color scale for the effective scatterer-
size estimates is the same on the two figures. Specifically,
the average scatterer-size estimate was 21.3 ± 1.6 µm
for the non-metastatic node and 38.9 ± 3.0 µm for the
metastatic node. These illustrative results suggest that larger
scatterer size may reliably indicate metastatic regions within
lymph nodes of colon-cancer patients.

B. Classification performance

In total, more than 260 uniform lymph nodes from more
than 160 patients were entirely processed and used to train
linear-discriminant-based (LDB) classifiers. Table I presents
the classification performance results. For each organ, the
first line shows the classification results obtained using the
single best QUS estimate and the second line shows the
results obtained by linearly combining the four QUS esti-
mates. Finally, the last two columns display sensitivity and
specificity values obtained at a specific operating point. This
operating point was chosen to be clinically conservative (i.e.,
high sensitivity to limit false-negative determinations at the
expense of moderately higher false-positive determinations).

The colorectal-cancer results are very satisfactory and ex-
cellent classification performance was obtained with an AUC
value of 0.958 using D alone. Note that linear-discriminant
analysis did not increase the classification performance. The
gastric-cancer results are similar and equally satisfactory
when the thirteen QUS estimates were combined, although
because of the limited number of cases, greater uncertainty
exists. In previous reports, the gastric-cancer nodes were
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Fig. 1. Three-dimensional cross-sectional parametric images of a non-
metastatic lymph node from a colon-cancer patient. Effective scatterer-size
estimates are color-coded and overlaid on the three conventional B-mode
images. Co-registered histology is also shown.
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Fig. 2. Cross-sectional parametric images of an entirely-metastatic lymph
node from a colon-cancer patient. Effective scatterer-size estimates are
color-coded and overlaid on the conventional B-mode images. Co-registered
histology is also shown.

analyzed in combination with the colorectal nodes because
their histologic differences are minute [5] and because the
number of cases previously was insufficient for independent
analysis.

The breast-cancer nodes are structurally very different
from the gastric- and colorectal-cancer nodes, and classi-
fication performance was poorer with an AUC of 0.847
using linear-discriminant analysis. Note that the single best
QUS estimates (i.e., MQQ estimate Sa) led to very poor
classification with an AUC value of only 0.727. These
results might indicate that the scattering models used are not
well adapted to lymph nodes obtained from breast-cancer
patients.

Finally, the sensitivity and specificity values quoted in
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TABLE I
CLASSIFICATION PERFORMANCE OF QUS. AREAS UNDER THE ROC CURVE (AUC)

Primary Patient Total Cancer Non-cancer
Organ number nodes nodes nodes

Parameter ROC AUC Sensitivity Specificity

D 0.958±0.012 90.5% 85.7%Colorectal 77 140 21 119
LDB 0.958±0.012 90.5% 85.7%

D 0.880±0.069 100% 85.0%Gastric 17 25 5 20
LDB 0.950±0.044 100% 90.0%

Sa 0.727 ±0.066 93.8% 32.6%Breast 74 102 16 86
LDB 0.847 ±0.053 93.8% 55.8%

Table I clearly indicate that the QUS methods are reliable
and could drastically reduce the number of false-negative
determinations. (False-positive determinations very rarely
occur in the current standard of care using histology.)

C. Three-dimensional cancer likelihood images

The classifiers obtained from the uniform nodes were
applied to our entire lymph-node database, in particular,
to partially metastatic lymph nodes. Discriminant scores
were converted to cancer-likelihood values; and 3D cancer-
likelihood maps were generated and compared to co-
registered histology. Figure 3 displays an illustrative image
of a partially-metastatic axillary lymph node obtained from
a breast-cancer patient. This image in analogous to Figure 1
except that regions in the lymph node having a QUS-derived
cancer likelihood greater than 50% are highlighted in red
and that in the histology image (bottom right panel), the
metastatic regions were outlined in green by the pathologist.
Figure 3 indicates that the metastatic foci were well detected
in the B-mode images augmented with cancer the likelihood
overlay.
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Fig. 3. Three-dimensional cross-sectional parametric images of a partially
metastatic lymph node from a breast-cancer patient. Red highlights sym-
bolize cancer likelihood greater than 50%. Co-registered histology photo
micrograph showing metastatic regions in green is also shown.

IV. CONCLUSIONS

This study establishes the potential strength of QUS-based
detection of metastases regions in dissected lymph nodes.
These QUS methods were able to yield high sensitivity while
maintaining satisfactory specificity. Therefore, the results
to date suggest that these methods have great potential
for specific detection and localization of micrometastases
often missed during conventional histology. Finally, the 3D
cancer-likelihood maps could serve as basis for the devel-
opment of a novel pathology tool. A low-cost and small-
footprint device could be designed to quickly scan lymph
nodes, obtain QUS estimates, and guide the pathologist to-
wards suspicious regions. Such a tool could be invaluable for
reducing the current rate of false-negative determinations.
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